
4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 1/49

Link to GITHUB repository
Link to the the Google Colaboratory notebook

The Google Colaboratory notebook has the advantage that you can run PyCirc from it
without having to install PyCirc or even Python on your local system.
You �rst need to copy it to your google drive (or github repository)
You can also dowload it to your local device and open it as a Jupyter notebook (if you
have it installed with your Python).

PyCirc - Python Logic Circuit Modeling
and Simulation Package

The PyCirc package can be installed on your local system by running the following command
from the command line

pip install pycirc

Or you may try running one of the following commands from this notebook.
If you are running it from a Jupyter notebook on your local system, then it will be installed on
your device.

Installing the PyCirc package

To install from this notebook, uncomment the next line and run this cell.
%pip install pycirc
This should also work:
!pip install --upgrade pycirc

After installation, you have to restart this notebook.
Make sure to comment the %pip or !pip lines above to avoid reinstall each time y

To uninstall the package use:
%pip uninstall pycirc
or
!pip uninstall pycirc

After installation, you may need to restart this notebook.

https://github.com/samyzaf/pycirc
https://github.com/samyzaf/pycirc/blob/main/pycirc.ipynb

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 2/49

After installing the PyCirc package, you need to import it.
The following command imports PyCirc to your Python interpreter.

Loading the PyCirc package

from pycirc import *

Loading builtin box cells..cell

PyCirc is a new Python package for modeling and simulating simple Logic Circuits
speci�cally designed for educational use in introductory computation and digital logic college
course.
As such, it was primarily tuned for simplicity, readability convenience, and fast learning curve.

Less for speed or industrial production.

It is a light weight package especially designed for small to medium scale circuits, such as
those that are studied in introductory academic courses on the theory of computation and
electronic digital design.
Its main characteristic is that a digital circuit can be easily de�ned by a series of simple
Python commands, rather than an external static language.
So, the only requirement is a basic knowledge of the Python programming language, with a
little programming skill.
Experienced Python programmers can probably bene�t a lot more from this package.
It can be a useful companion for theoretical courses on computation models and languages
who wish also to engage the students with some programming experience and skills.

It is planned to be used in such a course by the author (Hebrew book at
http://samyzaf.com/a�.pdf).
It enables students to easily model and experiment with

Typical logic circuit design
Logic Circuit Modeling and Validation
Logic Circuit Testing
Logic problem solving

It does provide an opportunity for students to develop and practice some programming skills
while covering the theoretical computation course.
In this tutorial, we will cover:

Introduction

http://samyzaf.com/afl.pdf

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 3/49

1. Basic usage of PyCirc for modeling and manipulating Logic Circuits.
2. A short survey of the commands and tools of the PyCirc package.
3. Examples for modeling Logic Circuits and their manipulation.
4. Advanced usage of PyCirc for experienced Python programmers (TODO).

We start with a very simple logic circuit which we call "FOO"

Inputs gates: , ,

Output gates: ,

Logic action:

This circuit can be represented by the following PyCirc Diagram

A PyCirc diagram is a simpli�ed form of circuit diagram in which gates are represented by text
blocks rather than special shape symbols.

Many students �nd the usual gate symbols intimidating and hard to memorize.
Plain text on a circle or a rectangle seems to be more convenient, especially for
computation theory courses in which most of the participants do not have any
electronics background (or plan to go in this direction).

Input and output gates are represented by circles with an INP/OUT labels.

The other logic gates are represented by rectangular blocks with input/output pins near the
block edges.

Input gate names are blue colored.
Output gate names are green colored.
Logic gate names are brown colored.

Connections ("Wires") are represented by arrowed lines from source pin to target pin.

A pin is either an input/output gate or a named entry/exit point to a logic gate.

Example 1: The Circuit FOO

x1 x2 x3

y1 y2

(,) = (∧ , ¬)y1 y2 x1 x2 x3

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 4/49

In the above diagram we have 5 wires and 10 pins:

3 Input gates: x1, x2, x3
2 output gates: y1, y2
5 Block pins: g1/x1, g1/x2, g1/y, g2/x, g2/y

Note the special notation g/p for the block pins.

g stands for the gate name and p is the input/ouput name of the cell type of the gate.cell

Here is the PyCirc code for modeling this circuit:

Define("foo")
GATE (name="x1", type="inp")
GATE (name="x2", type="inp")
GATE (name="x3", type="inp")
GATE (name="y1", type="out")
GATE (name="y2", type="out")
GATE (name="g1", type="and2")
GATE (name="g2", type="not")

WIRE ("x1", "g1/x1")
WIRE ("x2", "g1/x2")
WIRE ("x3", "g2/x")
WIRE ("g1/y", "y1")
WIRE ("g2/y", "y2")
EndDef()

Cell = foo: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f011d8fae90>

Notic that this is a pure Python code!

So you need to run its cell in order to execute it.

A circuit de�nition starts with the Define() function call which accepts the circuit name as its
�rst argument.

The de�nition ends with the EndDef() function call.

A circuit de�nition consists of GATE and WIRE commands.

The GATE function accepts the name and the logic type of the gate.
The WIRE function connects a source pin to a target pin.

A pin notation g/p consists of a gate name g and a pin name p .

The pin p is either an input or an output pin of the gate.

For example the expression "g1/x2" designates the input pin "x2" of the gate "g1" .

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 5/49

The �ag "name=" is optional. It is enough to specify the name only:

 GATE("x1", type="inp")

The 'type' �ag indicates the logic cell name to which the gate is an instance of.

Input gates are the circuit elements in which we feed the input (boolean values).

Output gate are the circuit elements from which we read the output after its computation is
done.

All remaining gates are called logical gates.

They usually have incoming wires and outgoing wires and they perform some logic action.

We repeat: the above de�nition of the cell FOO is also a pure Python code!

This means that you can include it inside longer Python programs/scripts and manipulate
cells dynamically.

For example, it is possible to add or remove gates or wires in a circuit dynamically and
run it for optimization goals.

After successful design of a circuit such as FOO, it can be placed as a single �le 'foo.py' in a
circuit library and loaded by the load command

load("foo")

A circuit library is simply a directory that contains circuit �les.

You may have several directories, including directories residing on far Internet locations.

You specify the library with a list such as

set_path(["c:/eda/pycirc/lib", "d:/cmfl/code/logcirc/lib", "https://samyzaf.com/pyc

We will use this library path in this notebook, but you can download all circuit �les from the
following url, place them on your local computer, and change the path accordingly.

In most cases it is better to use the need command

Circuit libraries

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 6/49

need("foo")

which loads a circuit only if it was not already loaded.

You need to edit this list.
Replace the first two library paths to ones in your local system.
Or just leave the last one to load cells from pycirc web site.

set_path(["c:/eda/pycirc/lib", "d:/cmfl/code/logcirc/lib1", "https://samyzaf.com/p

You may want to copy the circuit library that we use in this notebook to your local pc.
Here is a link to a zip �le that contains all the cells we use here:

Click to download lib.zip

You can also browse this library and pick individual �les from it

Click to browse the library

After copying it to your local space, you can add more cells to it, or create more libraries like it.
If you do, don't forget to update the new list with the set_path command:

set_path([dir1, dir2, url1, url2, ...])

The term cell means a packaged circuit or any other function which accepts inputs and
provide output. After de�ning a circuit for example, it is "packaged" as a cell which hides its
content and only exposes its input and output.
Once we have de�ned a cell such as FOO, we can use it as a building block element inside the
de�nitions of new cells.
Every logic gate in a logic circuit must be an instance of some cell.
Typically, there can be several instances of the same cell in a logic circuit de�nition.
This is how the FOO cell is represented as a single block element in a logic circuit
It appears as a named black box with only entry and exit points (pins)

Gates as Cell Instances

https://samyzaf.com/pycirc/lib.zip
https://samyzaf.com/pycirc/lib

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 7/49

Here is an example of cell called cell FRED which uses an instance of the cell cell FOO as one of its
building blocks.

The Circuit FRED

CELL: FRED
This cell is using a gate of type FOO which we defined earlier
It will be automatically loaded.

Define("fred")

GATE("x1", type="inp") # No need to use: name="x1"
GATE("x2", type="inp")
GATE("y1", type="out")
GATE("y2", type="out")
GATE("g1", type="foo") # Here we define a gate g1 of type FOO ! <<<<<
GATE("g0", type="zero")

WIRE("x1", "g1/x1")
WIRE("x2", "g1/x2")
WIRE("g0", "g1/x3")
WIRE("g1/y1", "y1")
WIRE("g1/y2", "y2")

EndDef()

Cell = fred: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f0121ff1e50>

This is the standard for de�ning a new circuit from a regular Python code.

Within a librarry tree, the De�ne/EndDef lines must be omitted since the name of the
circuit, beginning and end, are easily inferred from the circuit �le.

Usually every circuit is de�ned in a single �le "name.py", and kept within a library directory, but
several circuit de�nitions can also reside in a single �le and imported to a Python code via the
Python import mechanism.

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 8/49

You create a library by

allocating a folder or a url for it.
putting all your circuit de�nitions in this folder (one circuit per �le).
adding this directory (or url) to the set_path list (see above.
Note that the De�ne/EndDef lines are omitted in a circuit �le!

Note the line GATE("g1", type="foo") in which the gate of type FOO is declared! It
automatically triggers the loading of FOO (if it wasn't already loaded).

It is easy to draw a PyCirc Diagram from the above de�nition

Note that we used the ZERO cell which has no inputs, and only one constant 0 output.

It is the hardware equivalent of a boolean constant.

We use it to �x the input x3 of gate g1 to zero.

The ZERO cell is a fundamental PyCirc cell which is automatically loaded when PyCirc starts.

The follwing cell cell HAM contains two gates of type FOO and two gates of type XOR3.

The XOR3 cell is a typical cell xor cell with 3 input gates (built in PyCirc).cell

It also contains one gate of type NOT.

The XOR3 and NOT cells are built in types of cell PyCirc and are loaded automatically when
PyCirc starts.

The Circuit HAM

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 9/49

Here is a PyCirc code for modeling this cell.cell
Note the compressed notation style for writing shorter code.

CELL: HAM
This cell is using the FOO cell which we defined earlier
"xor3" is a basic cell in PyCirc - it is built in and loaded at start time.

GATE("x<1:4>", type="inp") # Input gates: x1, x2, x3, x4
GATE("y<1:3>", type="out") # Output gates: y1, y2, y3
GATE("g1; g2", type="foo") # Here we define two gates g1 and g2 of t
GATE("g4", type="not")
GATE("g3; g5", type="xor3") # Here we define two gates g3 and g5 of t

WIRE("x1", "g1/x1")
WIRE("x2", "g1/x3")
WIRE("x3", "g1/x2; g2/x1") # Two wires defined in one line: "x3" ->
WIRE("x4", "g2/x2; g2/x3")
WIRE("g1/y1", "g3/x2")
WIRE("g1/y2", "g3/x1; g4/x; g5/x1") # Three wires defined in one line!
WIRE("g2/y1", "g5/x2")
WIRE("g2/y2", "g3/x3; g5/x3")
WIRE("g3/y", "y1")
WIRE("g4/y", "y2")

Define("ham")

WIRE("g5/y", "y3")

EndDef()

Cell = ham: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f011d91b6d0>

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 10/49

Note that "x<1:4>" stands for x1, x2, x3, x4
Instead of writing 4 lines of code

GATE("x1", type="inp")

GATE("x2", type="inp")

GATE("x3", type="inp")

GATE("x4", type="inp")

We can write one equivalent line!

GATE("x<1:4>", type="inp")

Instead of writing

WIRE("g1/y2", "g3/x1")

WIRE("g1/y2", "g4/x")

WIRE("g1/y2", "g5/x1")

We can simply write

WIRE("g1/y2", "g3/x1; g4/x; g5/x1")

Arguments can also be lists or tuples of compressed names!

WIRE("g1/y2", ["g%s/x%s" % (i,) for i in range(20)])

More on compressed notation in the examples below.
The only supported modes:

one to one
one to many
many to one
n to n

After de�ning the cell cell HAM we may start performing all kind of queries on it.

Cell Query and ManipulationCell

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 11/49

First we need to get a reference to it.

Get a reference to HAM

ham = PyCirc["ham"]

This gives us a PyCirc reference to our ham circuit object. which we can use to manipulate the
cell.
PyCirc is the name of the Python class which creates logic circuit objects.
The class PyCirc keeps a map between the name and the reference of every logic circuit
created by it.
So if you have the name of an existing logic circuit, you can get a handle for it by using

ref = PyCirc[name]

anywhere in your code.
You may use ref as any other Python object handle for querying and manipulating the cell
object.

Print the gates in the circuit HAM

for g in ham.gates:
 print(g)

gate id=13: name=x1, type=inp, value=(None), depth=0
gate id=14: name=x2, type=inp, value=(None), depth=0
gate id=15: name=x3, type=inp, value=(None), depth=0
gate id=16: name=x4, type=inp, value=(None), depth=0
gate id=17: name=y1, type=out, value=(None), depth=3
gate id=18: name=y2, type=out, value=(None), depth=3
gate id=19: name=y3, type=out, value=(None), depth=3
gate id=20: name=g1, type=foo, value=(y1=None, y2=None), depth=1
gate id=21: name=g2, type=foo, value=(y1=None, y2=None), depth=1
gate id=22: name=g4, type=not, value=(y=None), depth=2
gate id=23: name=g3, type=xor3, value=(y=None), depth=2
gate id=24: name=g5, type=xor3, value=(y=None), depth=2

Count the number of gates in the circuit HAM

print(len(ham.gates))

12

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 12/49

Get names of input gates

for x in ham.input:
 print(x.name)

x1
x2
x3
x4

Get names of output gates

for x in ham.output:
 print(x.name)

y1
y2
y3

Count the number of wires in the circuit HAM
print(len(ham.wires))

16

List all XOR3 gates

for g in ham.gates:
 if g.type == "xor3":
 print(g)

gate id=23: name=g3, type=xor3, value=(y=None), depth=2
gate id=24: name=g5, type=xor3, value=(y=None), depth=2

Get a reference to gate "g1"
g1 = ham["g1"]

Print all outcoming gates from g1
for g in ham.out_gates(g1):
 print(g)

gate id=22: name=g4, type=not, value=(y=None), depth=2
gate id=23: name=g3, type=xor3, value=(y=None), depth=2
gate id=24: name=g5, type=xor3, value=(y=None), depth=2

This gives us only gates and ignores pins.
To get pin connections we need to dig a bit deeper.

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 13/49

Print all outgoing wires from g1
for w in ham.out_wires(g1):
 print(w)

wire id=16:
 source=gate id=20: name=g1, type=foo, value=(y1=None, y2=None), depth=1
 target=gate id=23: name=g3, type=xor3, value=(y=None), depth=2
 source=y1
 target=x2
wire id=17:
 source=gate id=20: name=g1, type=foo, value=(y1=None, y2=None), depth=1
 target=gate id=23: name=g3, type=xor3, value=(y=None), depth=2
 source=y2
 target=x1
wire id=18:
 source=gate id=20: name=g1, type=foo, value=(y1=None, y2=None), depth=1
 target=gate id=22: name=g4, type=not, value=(y=None), depth=2
 source=y2
 target=x
wire id=19:
 source=gate id=20: name=g1, type=foo, value=(y1=None, y2=None), depth=1
 target=gate id=24: name=g5, type=xor3, value=(y=None), depth=2
 source=y2
 target=x1

This is too verbose.
We want to get a cleaner list of pin connections:

for w in ham.out_wires(g1):
 print("%s => %s" % (w.source, w.target))

g1/y1 => g3/x2
g1/y2 => g3/x1
g1/y2 => g4/x
g1/y2 => g5/x1

Get a reference to gate "g3"
g3 = ham["g3"]

Print all incoming wires to gate g3
for w in ham.in_wires(g3):
 print("%s ==> %s" % (w.source, w.target))

g1/y1 ==> g3/x2
g1/y2 ==> g3/x1
g2/y2 ==> g3/x3

Note the ham["g3"] expression in the �rst line.

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 14/49

The PyCirc object ham has been overloaded as a dictionary which maps gate and wire names
to their reference.

The following diagram displays examples of typical circuit representations in the PyCirc
package.

Multiplxers are important circuit elements in electronic design.

Here is a simple PyCirc Design Diagram and code for a 4x1 Multiplexer circuit (aka MUX2)

4x1 Multiplexer Design

File for MUX2
input: x3, x2, x1, x0, s2, s1

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 15/49

output: y

GATE("x0", type="inp")
GATE("x1", type="inp")
GATE("x2", type="inp")
GATE("x3", type="inp")
GATE("s1", type="inp")
GATE("s2", type="inp")
GATE("y", type="out")
GATE("g1", type="not")
GATE("g2", type="not")
GATE("g3", type="and3")
GATE("g4", type="and3")
GATE("g5", type="and3")
GATE("g6", type="and3")
GATE("g7", type="or4")

WIRE("s1", "g1/x")
WIRE("s1", "g5/x1")
WIRE("s1", "g6/x1")
WIRE("s2", "g2/x")
WIRE("s2", "g4/x3")
WIRE("s2", "g6/x3")
WIRE("x0", "g3/x2")
WIRE("x1", "g4/x2")
WIRE("x2", "g5/x2")
WIRE("x3", "g6/x2")
WIRE("g1/y", "g3/x1")
WIRE("g1/y", "g4/x1")
WIRE("g2/y", "g3/x3")
WIRE("g2/y", "g5/x3")
WIRE("g3/y", "g7/x1")
WIRE("g4/y", "g7/x2")
WIRE("g5/y", "g7/x3")
WIRE("g6/y", "g7/x4")
WIRE("g7/y", "y")

Cell = mux2: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f011d8eff10>

This is long. Took 35 lines of code to
de�ne this circuit.

ψ

* This is long. Took 35 lines of code to
* With **compressed notation** it takes o
* In addition, **compressed notation** ca

better the circuit structure as it is

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 16/49

With compressed notation it takes only 15
lines!
In addition, compressed notation can help
us understand better the circuit structure,
as it is displayed in one paragraph.
Remember that this is a clean Python
code, so you can use Python comments,
and other Python commands.

 better the circuit structure, as it is
* Remember that this is a clean Python co
 Python comments, and other Python comma

File: mux2.py
MUX2 (4x1 Multiplexer)
input: x3, x2, x1, x0, s2, s1
output: y

GATE("x<0:3>", type="inp") # 4 bits
GATE("s1;s2", type="inp") # 2 selectors
GATE("y", type="out")
GATE("g1; g2", type="not")
GATE("g<3:6>", type="and3") # 4 gates of basic type "and3"
GATE("g7", type="or4")

WIRE("s1", "g1/x; g5/x1; g6/x1")
WIRE("s2", "g2/x; g4/x3; g6/x3") # 3 wires!
WIRE("x<0:3>", "g<3:6>/x2")
WIRE("g1/y", "g3/x1; g4/x1")
WIRE("g2/y", "g3/x3; g5/x3")
WIRE("g<3:6>/y", "g7/x<1:4>") # 4 wires
WIRE("g7/y", "y")

Cell = mux2: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f0124aa3e90>

get a grip on our MUX2 object

mux2 = PyCirc["mux2"]

Lets print the list of gates in our circuit mux2:

for g in mux2.gates:
 print(g)

gate id=39: name=x0, type=inp, value=(None), depth=0

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 17/49

gate id=40: name=x1, type=inp, value=(None), depth=0
gate id=41: name=x2, type=inp, value=(None), depth=0
gate id=42: name=x3, type=inp, value=(None), depth=0
gate id=43: name=s1, type=inp, value=(None), depth=0
gate id=44: name=s2, type=inp, value=(None), depth=0
gate id=45: name=y, type=out, value=(None), depth=4
gate id=46: name=g1, type=not, value=(y=None), depth=1
gate id=47: name=g2, type=not, value=(y=None), depth=1
gate id=48: name=g3, type=and3, value=(y=None), depth=2
gate id=49: name=g4, type=and3, value=(y=None), depth=2
gate id=50: name=g5, type=and3, value=(y=None), depth=2
gate id=51: name=g6, type=and3, value=(y=None), depth=1
gate id=52: name=g7, type=or4, value=(y=None), depth=3

This is too verbose, but useful for debugging purposes.
To get more speci�c info, you may use code like this:

print("Gates list")
for g in mux2.gates:
 print("name = %s, type = %s" % (g.name, g.type))

Gates list
name = x0, type = inp
name = x1, type = inp
name = x2, type = inp
name = x3, type = inp
name = s1, type = inp
name = s2, type = inp
name = y, type = out
name = g1, type = not
name = g2, type = not
name = g3, type = and3
name = g4, type = and3
name = g5, type = and3
name = g6, type = and3
name = g7, type = or4

Truth assignment for a boolean formula or a boolean circuit is a mapping between its boolean
variables and the two boolean values .
In PyCirc, trurth assignment is modeled by a Python class called Assign, which is a subclass
of the standard Python dictionary class dict.
An Assign object maps a list of gate names to one of three values: {0, 1, None} .
The value None indicates uninitialized state.
Here is a simple example for de�ning an assignment on four input variables.

Truth Assignments in PyCirc

{0, 1}

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 18/49

a = Assign(["x1", "x2", "x3", "x4"], [0,0,1,1])

Here are some code examples for manipulating an Assign object

print(a)

x1=0, x2=0, x3=1, x4=1

for x in a.names:
 print(x)

x1
x2
x3
x4

0011' '

a.bits()

001' '

a.bits("x<1:3>")

01' '

a.bits(["x2", "x4"])

An assignment object a is callable (i.e., can be called as a function)
The result of the call a() is the list of its bit values.

a()

[0, 0, 1, 1]

You can pass bit names in expanded or compressed form:

a(["x2","x3"])

[0, 1]

a("x<2:4>")

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 19/49

[0, 1, 1]

It is also possible to create an Assign object from keyword/value pairs, just like in a Python
dictionary.

a = Assign.fromKeys(x1=0, x2=0, x3=1, x4=1)
print(a)

x1=0, x2=0, x3=1, x4=1

The Assign class also accepts names in compressed form.
The default of the second argument is None for all bits.

a = Assign("x<1:4>")
print(a)

x1=None, x2=None, x3=None, x4=None

The None value indicates that the input is uninitialized.
Use the following to initialize all values to zero (or one).

a = Assign("x<1:4>", 0)
print(a)

x1=0, x2=0, x3=0, x4=0

The Assign class also has a static method Assign.iter for creating an iterator for looping over
all truth assignments!

gates = ['x1', 'x2', 's1', 's2']
for a in Assign.iter(gates):
 print(a)

x1=0, x2=0, s1=0, s2=0
x1=0, x2=0, s1=0, s2=1
x1=0, x2=0, s1=1, s2=0
x1=0, x2=0, s1=1, s2=1
x1=0, x2=1, s1=0, s2=0
x1=0, x2=1, s1=0, s2=1
x1=0, x2=1, s1=1, s2=0
x1=0, x2=1, s1=1, s2=1
x1=1, x2=0, s1=0, s2=0
x1=1, x2=0, s1=0, s2=1

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 20/49

x1=1, x2=0, s1=1, s2=0
x1=1, x2=0, s1=1, s2=1
x1=1, x2=1, s1=0, s2=0
x1=1, x2=1, s1=0, s2=1
x1=1, x2=1, s1=1, s2=0
x1=1, x2=1, s1=1, s2=1

gates = ['x1', 'x2', 's1', 's2']
for a in Assign.iter(gates):
 print(a.bits())

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

gates = ['x1', 'x2', 's1', 's2']
for a in Assign.iter(gates):
 bitlist = a()
 print(bitlist)

[0, 0, 0, 0]
[0, 0, 0, 1]
[0, 0, 1, 0]
[0, 0, 1, 1]
[0, 1, 0, 0]
[0, 1, 0, 1]
[0, 1, 1, 0]
[0, 1, 1, 1]
[1, 0, 0, 0]
[1, 0, 0, 1]
[1, 0, 1, 0]
[1, 0, 1, 1]
[1, 1, 0, 0]
[1, 1, 0, 1]
[1, 1, 1, 0]
[1, 1, 1, 1]

How to initialize a PyCirc object?

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 21/49

When you create a new Pycirc circuit, none of the input gates are initialized.
All gate values equal None .

for g in mux2.gates:
 print(g)

gate id=39: name=x0, type=inp, value=(None), depth=0
gate id=40: name=x1, type=inp, value=(None), depth=0
gate id=41: name=x2, type=inp, value=(None), depth=0
gate id=42: name=x3, type=inp, value=(None), depth=0
gate id=43: name=s1, type=inp, value=(None), depth=0
gate id=44: name=s2, type=inp, value=(None), depth=0
gate id=45: name=y, type=out, value=(None), depth=4
gate id=46: name=g1, type=not, value=(y=None), depth=1
gate id=47: name=g2, type=not, value=(y=None), depth=1
gate id=48: name=g3, type=and3, value=(y=None), depth=2
gate id=49: name=g4, type=and3, value=(y=None), depth=2
gate id=50: name=g5, type=and3, value=(y=None), depth=2
gate id=51: name=g6, type=and3, value=(y=None), depth=1
gate id=52: name=g7, type=or4, value=(y=None), depth=3

In order to run a circuit, we �rst need to initialize its input gates.
Lets assign values to mux2 input gates, and check again the values of its gates.
The PyCirc set method is used

a = Assign.fromKeys(x3=1, x2=0, x1=1, x0=0, s2=0, s1=1)
mux2.set(a) # Initilizing the cel MUX2 with assignment a

for g in mux2.gates:
 print(g)

gate id=39: name=x0, type=inp, value=(0), depth=0
gate id=40: name=x1, type=inp, value=(1), depth=0
gate id=41: name=x2, type=inp, value=(0), depth=0
gate id=42: name=x3, type=inp, value=(1), depth=0
gate id=43: name=s1, type=inp, value=(1), depth=0
gate id=44: name=s2, type=inp, value=(0), depth=0
gate id=45: name=y, type=out, value=(None), depth=4
gate id=46: name=g1, type=not, value=(y=None), depth=1
gate id=47: name=g2, type=not, value=(y=None), depth=1
gate id=48: name=g3, type=and3, value=(y=None), depth=2
gate id=49: name=g4, type=and3, value=(y=None), depth=2
gate id=50: name=g5, type=and3, value=(y=None), depth=2
gate id=51: name=g6, type=and3, value=(y=None), depth=1
gate id=52: name=g7, type=or4, value=(y=None), depth=3

We see that all input gates are initialized with boolean values.
All other gates value are still None .

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 22/49

PyCirc has a step method which triggers the logic function of every logic gate whose inputs
are initialized to boolean values.

mux2.step()

for g in mux2.gates:
 print(g)

gate id=39: name=x0, type=inp, value=(0), depth=0
gate id=40: name=x1, type=inp, value=(1), depth=0
gate id=41: name=x2, type=inp, value=(0), depth=0
gate id=42: name=x3, type=inp, value=(1), depth=0
gate id=43: name=s1, type=inp, value=(1), depth=0
gate id=44: name=s2, type=inp, value=(0), depth=0
gate id=45: name=y, type=out, value=(None), depth=4
gate id=46: name=g1, type=not, value=(y=0), depth=1
gate id=47: name=g2, type=not, value=(y=1), depth=1
gate id=48: name=g3, type=and3, value=(y=None), depth=2
gate id=49: name=g4, type=and3, value=(y=None), depth=2
gate id=50: name=g5, type=and3, value=(y=None), depth=2
gate id=51: name=g6, type=and3, value=(y=0), depth=1
gate id=52: name=g7, type=or4, value=(y=None), depth=3

We now see that also gates g1 and g2 are initialized to boolean values.
From the diagram of MUX2 we see that .
Since , we get .
From the diagram we see that .
All other gates are still in None state.
To reach the output gate, we need to apply the step method three more times.
The number of times depends on the depth of the circuit.

= ¬g1 s1

= 1s1 = 0g1

= ¬ = ¬0 = 1g2 s2

mux2.step()

for g in mux2.gates:
 print(g)

gate id=39: name=x0, type=inp, value=(0), depth=0
gate id=40: name=x1, type=inp, value=(1), depth=0
gate id=41: name=x2, type=inp, value=(0), depth=0
gate id=42: name=x3, type=inp, value=(1), depth=0
gate id=43: name=s1, type=inp, value=(1), depth=0
gate id=44: name=s2, type=inp, value=(0), depth=0
gate id=45: name=y, type=out, value=(None), depth=4
gate id=46: name=g1, type=not, value=(y=0), depth=1
gate id=47: name=g2, type=not, value=(y=1), depth=1
gate id=48: name=g3, type=and3, value=(y=0), depth=2
gate id=49: name=g4, type=and3, value=(y=0), depth=2
gate id=50: name=g5, type=and3, value=(y=0), depth=2

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 23/49

gate id=51: name=g6, type=and3, value=(y=0), depth=1
gate id=52: name=g7, type=or4, value=(y=None), depth=3

mux2.step()

for g in mux2.gates:
 print(g)

gate id=39: name=x0, type=inp, value=(0), depth=0
gate id=40: name=x1, type=inp, value=(1), depth=0
gate id=41: name=x2, type=inp, value=(0), depth=0
gate id=42: name=x3, type=inp, value=(1), depth=0
gate id=43: name=s1, type=inp, value=(1), depth=0
gate id=44: name=s2, type=inp, value=(0), depth=0
gate id=45: name=y, type=out, value=(None), depth=4
gate id=46: name=g1, type=not, value=(y=0), depth=1
gate id=47: name=g2, type=not, value=(y=1), depth=1
gate id=48: name=g3, type=and3, value=(y=0), depth=2
gate id=49: name=g4, type=and3, value=(y=0), depth=2
gate id=50: name=g5, type=and3, value=(y=0), depth=2
gate id=51: name=g6, type=and3, value=(y=0), depth=1
gate id=52: name=g7, type=or4, value=(y=0), depth=3

mux2.step()

for g in mux2.gates:
 print(g)

gate id=39: name=x0, type=inp, value=(0), depth=0
gate id=40: name=x1, type=inp, value=(1), depth=0
gate id=41: name=x2, type=inp, value=(0), depth=0
gate id=42: name=x3, type=inp, value=(1), depth=0
gate id=43: name=s1, type=inp, value=(1), depth=0
gate id=44: name=s2, type=inp, value=(0), depth=0
gate id=45: name=y, type=out, value=(0), depth=4
gate id=46: name=g1, type=not, value=(y=0), depth=1
gate id=47: name=g2, type=not, value=(y=1), depth=1
gate id=48: name=g3, type=and3, value=(y=0), depth=2
gate id=49: name=g4, type=and3, value=(y=0), depth=2
gate id=50: name=g5, type=and3, value=(y=0), depth=2
gate id=51: name=g6, type=and3, value=(y=0), depth=1
gate id=52: name=g7, type=or4, value=(y=0), depth=3

After initializing the circuit, we can run it, get the output, and print it.
Now all gates are initialize and we can extract the circuit outcome by the PyCirc get method.

Getting the circuit output

o = mux2.get()

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 24/49

print(o)

y=0

This is of course not the normal way to use the circuit for computation.
It is intended for exhibiting the way a logical circuit operates and for debugging.
The straightforward way to compute the output of a circuit is quite simple

o = mux2(a)
print("Input:", a)
print("Output:", o)

Input: x3=1, x2=0, x1=1, x0=0, s2=0, s1=1
Output: y=0

In Python it is very easy to turn an object to also serve as a function ("callable object").
The circuit handle mux2 serves as a function too!
So in one line o = mux2(a) we perform all the follwoing things

1. Initialize the circuit input gates with the assignment a .
2. Perform the step() method repeatedly in order to reach the output gates .
3. Return the circuit output via the get method.

In some circumstances, we may have to initialize the input gates one by one.
In such cases we can use the run() method for performing the computation, and the use the
get() method for obtaining the circuit output

Obtain handles to MUX2 input gates
x0 = mux2["x0"] # mux2["x0"] is a handle to gate "x0"
x1 = mux2["x1"]
x2 = mux2["x2"]
x3 = mux2["x3"]
s1 = mux2["s1"]
s2 = mux2["s2"]

Now we have handles to all MUX2 input gates, we can do
all kind of things with them:

x0.set(0)
x1.set(0)
x2.set(1)
x3.set(1)

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 25/49

s1.set(1)
s2.set(0)

mux2.run() # Running the circuit

o = mux2.get() # Obtaining the output
print("The output is:")
print(o)

The output is:
y=0

A shorter way to do the same thing is:

mux2["x0"].set(0) # mux2["x0"] is a handle to gate "x0"
mux2["x1"].set(0)
mux2["x2"].set(1)
mux2["x3"].set(1)
mux2["s1"].set(1)
mux2["s2"].set(0)

mux2.run() # Running the circuit

o = mux2.get() # Obtaining the output
print("The output is:")
print(o)

The output is:
y=0

The output is also a Python dictionary which maps the circuit output names to their repective
values.
In our example, the circuit has only on output 'y'.
Thus, we get a one key assignment y=0 .
The circuit object can also be used as a function for performing the circuit action.
So instead of running three different commands

 mux2.set(a)

 mux2.run()

 o = mux2.get()

We only need one command

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 26/49

 o = mux2(a)

However, in some cases we need to go step by step, so we need to go a little bit slower.
For example, in order to observe intermediate values of the logic gates, we may need to
initialize the circuit with the set method and proceed to the output step by step.

The Assign.iter iterator is very useful for producing all possible outcomes of a given circuit.
Here is a code for producing all the outcomes of the circuit HAM

Assignment Iterator

Input = [x.name for x in ham.input] # we need the names of the inputs
Output = [y.name for y in ham.output] # we also want to print the output name
print("Input:", Input)
print("Output:", Output)

for a in Assign.iter(Input):
 o = ham(a)
 print("ham: %s => %s" % (a.bits(), o.bits()))

Input: ['x1', 'x2', 'x3', 'x4']
Output: ['y1', 'y2', 'y3']
ham: 0000 => 000
ham: 0001 => 101
ham: 0010 => 000
ham: 0011 => 100
ham: 0100 => 111
ham: 0101 => 010
ham: 0110 => 111
ham: 0111 => 011
ham: 1000 => 000
ham: 1001 => 101
ham: 1010 => 000
ham: 1011 => 000
ham: 1100 => 111
ham: 1101 => 010
ham: 1110 => 011
ham: 1111 => 111

Here is a code snippet for generating the truth table for the cell cell HAM.

Input = [x.name for x in ham.input]
Output = [y.name for y in ham.output]
names = Input + Output
head = " ".join(names)

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 27/49

print(head)

for a in Assign.iter(Input):
 o = ham(a)
 bits = tuple(a() + o())
 line = len(bits) * "%d " % bits
 print(line)

x1 x2 x3 x4 y1 y2 y3
0 0 0 0 0 0 0
0 0 0 1 1 0 1
0 0 1 0 0 0 0
0 0 1 1 1 0 0
0 1 0 0 1 1 1
0 1 0 1 0 1 0
0 1 1 0 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 1 0 1
1 0 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 1 1 1
1 1 0 1 0 1 0
1 1 1 0 0 1 1
1 1 1 1 1 1 1

Two circuits are called equivalent if they have the same boolean function.
Here is a PyCirc code for implementing an algorithm that checks if two circuits are equivalent.

Check if two logic circuites are equivalent
that is: have identical truth tables.

def is_equiv(circ1, circ2):
 Inp1 = [g.name for g in circ1.input]
 Inp2 = [g.name for g in circ2.input]
 if not len(Inp1) == len(Inp2):
 return False
 for a in Assign.iter(Inp1):
 bits1 = circ1(a).bits()
 bits2 = circ2(a).bits()
 if not bits1 == bits2:
 print("a=%s, out1=%s, out2=%s" % (a, bits1, bits2))
 return False

 return True

In our cell library we have two de�nitions of the cell cell cell MUX2

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 28/49

A long de�nition: "mux2.py"
A compressed de�nition: "mux2b.py"

Having two de�nitions for the same cell is not a good idea, but in some circumstances iscell
required for testing and research.
In such cases it is a must that we have a tool for checking that indeed these de�nitions are
equivalent! Or else we're in deep trouble ...
This is where we use our is_equiv utility:

load("mux2")
load("mux2b")
mux2 = PyCirc["mux2"]
mux2b = PyCirc["mux2b"]
print("Checking equivalence:")
is_equiv(mux2, mux2b)

path = ['c:/eda/pycirc/lib', 'd:/cmfl/code/logcirc/lib1', 'https://samyzaf.com/pycirc/li
Cell = mux2: Validity check: OK.Cell
Loaded circuit mux2 from: https://samyzaf.com/pycirc/lib/mux2.py
path = ['c:/eda/pycirc/lib', 'd:/cmfl/code/logcirc/lib1', 'https://samyzaf.com/pycirc/li
Cell = mux2b: Validity check: OK.Cell
Loaded circuit mux2b from: https://samyzaf.com/pycirc/lib/mux2b.py
Checking equivalence:
True

Now we build an 8x1 Multiplexer circuit (aka MUX3) by using our MUX2 circuit as one of its
building blocks (two instance of MUX2 are needed).

We also need one instance of 2x1 Multiplexer (aka MUX1), which we leave to the student as
an easy exercise.

8x1 Multiplexer Design

http://samyzaf.com/pycirc/lib/mux2.py
http://samyzaf.com/pycirc/lib/mux2b.py
https://samyzaf.com/pycirc/lib
https://samyzaf.com/pycirc/lib/mux2.py
https://samyzaf.com/pycirc/lib
https://samyzaf.com/pycirc/lib/mux2b.py

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 29/49

As you can see from the diagram we now have 8 inputs bits: x0, x1, x2, x3, x4, x5, x6, x7,
and one output bit: y.
We only need 3 logic gates: g1, g2, and g3.

g1 and g2 are two instances of MUX2,
g3 is an instance of MUX1.

Here is the code for creating a PyCirc MUX3 object.

Notice that this time we are using compressed notation technique for creating the 11
input gates in one line!
The compressed notation can be used everywhere in PyCirc and saves a lot of typing!
Note that this is the python code. Within a circuit �le you must remove the openning
De�ne and closing EndDef commands!

need("mux2")

Define("mux3")
GATE("x<0:7>; s<1:3>", type="inp")
GATE("y", type="out")

GATE("g1", type="mux2")
GATE("g2", type="mux2")
GATE("g3", type="mux1")

WIRE("x0" "g1/x0")

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 30/49

WIRE(x0 , g1/x0)
WIRE("x1", "g1/x1")
WIRE("x2", "g1/x2")
WIRE("x3", "g1/x3")
WIRE("x4", "g2/x0")
WIRE("x5", "g2/x1")
WIRE("x6", "g2/x2")
WIRE("x7", "g2/x3")
WIRE("s2", "g1/s1")
WIRE("s2", "g2/s1")
WIRE("s3", "g1/s2")
WIRE("s3", "g2/s2")
WIRE("s1", "g3/s1")
WIRE("g1/y", "g3/x0")
WIRE("g2/y", "g3/x1")
WIRE("g3/y", "y")
EndDef()

Cell = mux3: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f011d409290>

mux3 = PyCirc["mux3"]

for g in mux3.gates:
 print(g)

gate id=81: name=x0, type=inp, value=(None), depth=0
gate id=82: name=x1, type=inp, value=(None), depth=0
gate id=83: name=x2, type=inp, value=(None), depth=0
gate id=84: name=x3, type=inp, value=(None), depth=0
gate id=85: name=x4, type=inp, value=(None), depth=0
gate id=86: name=x5, type=inp, value=(None), depth=0
gate id=87: name=x6, type=inp, value=(None), depth=0
gate id=88: name=x7, type=inp, value=(None), depth=0
gate id=89: name=s1, type=inp, value=(None), depth=0
gate id=90: name=s2, type=inp, value=(None), depth=0
gate id=91: name=s3, type=inp, value=(None), depth=0
gate id=92: name=y, type=out, value=(None), depth=3
gate id=93: name=g1, type=mux2, value=(y=None), depth=1
gate id=94: name=g2, type=mux2, value=(y=None), depth=1
gate id=95: name=g3, type=mux1, value=(y=None), depth=2

mux3 = PyCirc["mux3"]

for g in mux3.gates:
 print("%s = %s" % (g.name, g.get()))

x0 = None

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 31/49

x1 = None
x2 = None
x3 = None
x4 = None
x5 = None
x6 = None
x7 = None
s1 = None
s2 = None
s3 = None
y = None
g1 = y=None
g2 = y=None
g3 = y=None

for w in mux3.wires:
 print(w)

 target=gate id=94: name=g2, type=mux2, value=(y=None), depth=1
 source=None
 target=x0
wire id=107:
 source=gate id=86: name=x5, type=inp, value=(None), depth=0
 target=gate id=94: name=g2, type=mux2, value=(y=None), depth=1
 source=None
 target=x1
wire id=108:
 source=gate id=87: name=x6, type=inp, value=(None), depth=0
 target=gate id=94: name=g2, type=mux2, value=(y=None), depth=1
 source=None
 target=x2
wire id=109:
 source=gate id=88: name=x7, type=inp, value=(None), depth=0
 target=gate id=94: name=g2, type=mux2, value=(y=None), depth=1
 source=None
 target=x3
wire id=110:
 source=gate id=90: name=s2, type=inp, value=(None), depth=0
 target=gate id=93: name=g1, type=mux2, value=(y=None), depth=1
 source=None
 target=s1
wire id=111:
 source=gate id=90: name=s2, type=inp, value=(None), depth=0
 target=gate id=94: name=g2, type=mux2, value=(y=None), depth=1
 source=None
 target=s1
wire id=112:
 source=gate id=91: name=s3, type=inp, value=(None), depth=0
 target=gate id=93: name=g1, type=mux2, value=(y=None), depth=1
 source=None
 target=s2
wire id=113:
 source=gate id=91: name=s3, type=inp, value=(None), depth=0
 target=gate id=94: name=g2, type=mux2, value=(y=None), depth=1
 source=None
target=s2

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 32/49

 target=s2
wire id=114:
 source=gate id=89: name=s1, type=inp, value=(None), depth=0
 target=gate id=95: name=g3, type=mux1, value=(y=None), depth=2
 source=None
 target=s1
wire id=115:
 source=gate id=93: name=g1, type=mux2, value=(y=None), depth=1
 target=gate id=95: name=g3, type=mux1, value=(y=None), depth=2
 source=y
 target=x0
wire id=116:
 source=gate id=94: name=g2, type=mux2, value=(y=None), depth=1
 target=gate id=95: name=g3, type=mux1, value=(y=None), depth=2
 source=y
 target=x1
wire id=117:
 source=gate id=95: name=g3, type=mux1, value=(y=None), depth=2
 target=gate id=92: name=y, type=out, value=(None), depth=3
 source=y
 target=None

This is quite verbose and not too helpful except for debugging.
We can extract a more focused output with code like this.

for w in mux3.wires:
 print("%s => %s" % (w.source, w.target))

x0 => g1/x0
x1 => g1/x1
x2 => g1/x2
x3 => g1/x3
x4 => g2/x0
x5 => g2/x1
x6 => g2/x2
x7 => g2/x3
s2 => g1/s1
s2 => g2/s1
s3 => g1/s2
s3 => g2/s2
s1 => g3/s1
g1/y => g3/x0
g2/y => g3/x1
g3/y => y

a = Assign("x<0:7> ; s<1:3>", "00001000" + "000")
mux3.set(a)
for x in mux3.input:
 print("%s = %d" % (x.name, x.value))

g3 = mux3["g3"]

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 33/49

for g in mux3.in_gates(g3):
 print(g)
print("Depth =", mux3.depth)

x0 = 0
x1 = 0
x2 = 0
x3 = 0
x4 = 1
x5 = 0
x6 = 0
x7 = 0
s1 = 0
s2 = 0
s3 = 0
gate id=89: name=s1, type=inp, value=(0), depth=0
gate id=93: name=g1, type=mux2, value=(y=None), depth=1
gate id=94: name=g2, type=mux2, value=(y=None), depth=1
Depth = 3

a = Assign("x<0:7> ; s<1:3>", "00000011" + "111")
print("Input:")
print(a)
o = mux3(a)
print("Output:")
print(o)

Input:
x0=0, x1=0, x2=0, x3=0, x4=0, x5=0, x6=1, x7=1, s1=1, s2=1, s3=1
Output:
y=1

Here is a simple design for 3 bits adder with carry in (cin) and carry out (cout) bits

3-bits Adder Design

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 34/49

This circuit acceps three types of input

two binary numbers: ,
a carry in bit: cin .

Its output is the binary sum of the two numbers (with the carry added).
In case of addition over�ow, we need a carry out (cout) output bit as well.
The following PyCirc code is the PyCirc model for the ADDER3 cell.cell

(, ,)a2 a1 a0 (, ,)b2 b1 b0

(, ,)y2 y1 y0

ADDER3
Input: a2, a1, a0, b2, b1, b0, cin
Output: y2, y1, y0, cout

Define("adder3")
GATE("a2", type="inp")
GATE("a1", type="inp")
GATE("a0", type="inp")

GATE("b2", type="inp")
GATE("b1", type="inp")
GATE("b0", type="inp")

GATE("cin", type="inp")

GATE("y2", type="out")
GATE("y1", type="out")
GATE("y0", type="out")

GATE("cout", type="out")

GATE("g1", type="xor2")

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 35/49

GATE("g2", type="xor2")
GATE("g3", type="xor2")
GATE("g4", type="mux1")
GATE("g5", type="mux1")
GATE("g6", type="mux1")
GATE("g7", type="xor2")
GATE("g8", type="xor2")
GATE("g9", type="xor2")

WIRE("a2", "g3/x2")
WIRE("a2", "g6/x0")
WIRE("a1", "g2/x2")
WIRE("a0", "g1/x2")
WIRE("a0", "g4/x0")
WIRE("b2", "g3/x1")
WIRE("b1", "g2/x1")
WIRE("b1", "g5/x0")
WIRE("b0", "g4/x1")
WIRE("b0", "g9/x2")
WIRE("cin", "g1/x1")
WIRE("g1/y", "g4/s1")
WIRE("g1/y", "g9/x1")
WIRE("g2/y", "g5/s1")
WIRE("g2/y", "g8/x2")
WIRE("g3/y", "g6/s1")
WIRE("g3/y", "g7/x2")
WIRE("g4/y", "g5/x1")
WIRE("g4/y", "g8/x1")
WIRE("g5/y", "g6/x1")
WIRE("g5/y", "g7/x1")
WIRE("g6/y", "cout")
WIRE("g7/y", "y2")
WIRE("g8/y", "y1")
WIRE("g9/y", "y0")
EndDef()

Cell = adder3: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f011d8faa90>

This is the compressed version of this code.
The number of lines was reduced by half! (from 46 to 23).

ADDER3, compressed version
Input: a2, a1, a0, b2, b1, b0, cin
Output: y2, y1, y0, cout

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 36/49

Define("adder3")
GATE("a<2:0>", type="inp")
GATE("b<2:0>", type="inp")
GATE("cin", type="inp")
GATE("y<2:0>", type="out")
GATE("cout", type="out")

GATE("g<1:3,7:9>", type="xor2")
GATE("g<4:6>", type="mux1")

WIRE("a2", "g3/x2; g6/x0")
WIRE("a1", "g2/x2")
WIRE("a0", "g1/x2; g4/x0")
WIRE("b2", "g3/x1")
WIRE("b1", "g2/x1; g5/x0")
WIRE("b0", "g4/x1; g9/x2")
WIRE("cin", "g1/x1")
WIRE("g1/y", "g4/s1; g9/x1")
WIRE("g2/y", "g5/s1; g8/x2")
WIRE("g3/y", "g6/s1; g7/x2")
WIRE("g4/y", "g5/x1; g8/x1")
WIRE("g5/y", "g6/x1; g7/x1")
WIRE("g6/y", "cout")
WIRE("g<7:9>/y", "y<2:0>")
EndDef()

Cell = adder3: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f011d423c90>

adder3 = PyCirc["adder3"]

Lets test our adder by verifying that

011+011=110

bits = "011" + "011" + "0"
a = Assign("a<2:0>; b<2:0>; cin", bits)
o = adder3(a)
cin = a["cin"]
cout = o["cout"]
A = a.bits("a<2:0>")
B = a.bits("b<2:0>")

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 37/49

Y = o.bits("y<2:0>")
print("%s + %s = %s : cin=%s cout=%s" % (A,B,Y,cin,cout))

011 + 011 = 110 : cin=0 cout=0

Here is a simple PyCirc Design Diagram for the standard 9-bits adder with a carry in (cin) and
carry out (cout) bits.

It uses 3 gates g1, g2, g3, of type ADDER3 which are chained by their cout/cin pins.

Input: a<8:0> + b<8:0> + cin

Output: y<8:0> + cout

ADDER9 - 9-bits Adder Design

Here is a compressed PyCirc code for ADDER9:

ADDER9
Input: a8, a7, a6, a5, a4, a3, a2, a1, a0, b8, b7, b6, b5, b4, b3, b2, b1, b0,
Output: y8, y7, y6, y5, y4, y3, y2, y1, y0, cout

need("adder3")

Define("adder9")
GATE("a<8:0>;b<8:0>", type="inp")
GATE("cin", type="inp")
GATE("y<8:0>", type="out")
GATE("cout", type="out")
GATE("g1", type="adder3") # First ADDER3 gate
GATE("g2", type="adder3") # Second ADDER3 gate
GATE("g3", type="adder3") # Third ADDER3 gate

WIRE("a<0:2>", "g1/a<0:2>"),
WIRE("a<3:5>", "g2/a<0:2>"),
WIRE("a<6:8>", "g3/a<0:2>"),

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 38/49

WIRE("b<0:2>", "g1/b<0:2>"),
WIRE("b<3:5>", "g2/b<0:2>"),
WIRE("b<6:8>", "g3/b<0:2>"),
WIRE("cin", "g1/cin"),
WIRE("g1/cout", "g2/cin"),
WIRE("g2/cout", "g3/cin"),
WIRE("g3/cout", "cout"),
WIRE("g1/y<0:2>", "y<0:2>"),
WIRE("g2/y<0:2>", "y<3:5>"),
WIRE("g3/y<0:2>", "y<6:8>"),
EndDef()

Cell = adder9: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f011d8e7e10>

The full_run utility can be used for traversing all input/output pairs.
Interactively.
To stop: press "q".

adder9 = PyCirc["adder9"]

full_run(adder9)

Input:
a8=0, a7=0, a6=0, a5=0, a4=0, a3=0, a2=0, a1=0, a0=0, b8=0, b7=0, b6=0, b5=0, b4=0, b3=0
Output:
y8=0, y7=0, y6=0, y5=0, y4=0, y3=0, y2=0, y1=0, y0=0, cout=0
Press <Enter> to continue or 'q' to quit
Next?
Input:
a8=0, a7=0, a6=0, a5=0, a4=0, a3=0, a2=0, a1=0, a0=0, b8=0, b7=0, b6=0, b5=0, b4=0, b3=0
Output:
y8=0, y7=0, y6=0, y5=0, y4=0, y3=0, y2=0, y1=0, y0=1, cout=0
Press <Enter> to continue or 'q' to quit
Next?
Input:
a8=0, a7=0, a6=0, a5=0, a4=0, a3=0, a2=0, a1=0, a0=0, b8=0, b7=0, b6=0, b5=0, b4=0, b3=0
Output:
y8=0, y7=0, y6=0, y5=0, y4=0, y3=0, y2=0, y1=0, y0=1, cout=0
Press <Enter> to continue or 'q' to quit
Next? q

However this is not readable and takes forever!
Number of inputs is 17 bits, so the loop has cycles!
We will better off running only random assignments, and verify them manually.
The pycirc package has the following utility for creating a random assignment.

= 131072217

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 39/49

def random_assignment(names):

 names = expand(names)

 a = Assign(names)

 for x in names:

 a[x] = randint(0,1)

 return a

Here are 5 random samples on our ADDER3 input

names = "a<8:0>; b<8:0>; cin"
for i in range(5):
 a = random_assignment(names)
 A = a.bits("a<8:0>")
 B = a.bits("b<8:0>")
 print(A, B, a["cin"])

000000001 000110011 0
000110000 010110001 1
111011011 100000010 0
111000011 001100110 1
011111111 111000001 1

Now we can generate random inputs for ADDER9, get the output, and verify its correctness.

names = "a<8:0>; b<8:0>; cin"
while True:
 a = random_assignment(names)
 A = a.bits("a<8:0>")
 B = a.bits("b<8:0>")
 cin = a["cin"]
 print(80*"-")
 print("Input: %s + %s + %s" % (A, B, cin))
 o = adder9(a)
 Y = o.bits("y<8:0>")
 cout = o["cout"]
 print("Output: %s + %s" % (Y, cout))
 print("Verify sum: %s" % (bin(int(A,2) + int(B,2)),))
 inpstr = input("Press <Enter> to continue or q to stop: ")
 if "q" == inpstr:
 break

--
Input: 111001010 + 000010011 + 1
Output: 111011110 + 0

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 40/49

Verify sum: 0b111011101
Press <Enter> to continue or q to stop:
--
Input: 110110111 + 011010010 + 1
Output: 010001010 + 1
Verify sum: 0b1010001001
Press <Enter> to continue or q to stop:
--
Input: 000101011 + 000111000 + 0
Output: 001100011 + 0
Verify sum: 0b1100011
Press <Enter> to continue or q to stop: q

A full adder is a the same thing except that it does not have carry bits.
It simply adds its two input bits and outputs the sum.
In general, an n-bits full adder has inputs bits "a<0:n-1>" + "<b<0:n-1>" and output
bits "y<0:n>".
We will use our ADDER3 cell to build a full cell 2-bits adder

by injecting a zero constant to its cin input,
and discarding its cout output bit.

We will also use this opportunity to present a different style for creating a PyCirc cell.cell

Full Adder

2n n + 1

CELL: FULL ADDER 2 CELL

We need adder3
need("adder3")

Here we present a different style for defining a logic circuit

gates = (
 GATE("a1", type="inp")
+ GATE("a0", type="inp")
+ GATE("b1", type="inp")
+ GATE("b0", type="inp")
+ GATE("ad3", type="adder3")
+ GATE("y2", type="out")
+ GATE("y1", type="out")
+ GATE("y0", type="out")
+ GATE("g0", type="zero")
)

wires = [

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 41/49

 Wire("a0", "ad3/a0"),
 Wire("a1", "ad3/a1"),
 Wire("b0", "ad3/b0"),
 Wire("b1", "ad3/b1"),
 Wire("g0", "ad3/a2"),
 Wire("g0", "ad3/b2"),
 Wire("g0", "ad3/cin"),
 Wire("ad3/y0", "y0"),
 Wire("ad3/y1", "y1"),
 Wire("ad3/y2", "y2"),
]

fa2 = PyCirc("full_adder2", gates, wires)
pycircLib.add_circ(fa2)

ATTENTION: some outputs are dangling! ad3 (adder3) : {'cout'}
Cell = full_adder2: Validity check: OK.Cell
<pycirc.pycirc.Cell at 0x7f011d39ed10>Cell

Notice that in this case, we do not have a De�ne(), EndDef() calls!

We simply de�ne a list of gates and a list of wires, and later use the class PyCirc to create the
cell.cell

The wires are created by the low level Wire class instead of the higher level WIRE function.

The Wire class is suited for generating a single wire object while WIERE generates
multiple wires and supports compressed names.

An output pin which is not connected to any other pin is called a dangling pin.

Notice that our 2-bits full adder FA2 has a dangling pin.

The carry out bit (cout) of the gate ad3 is dangling.

Also notice the constant gate g0 which �xes the carry in (cin) to a constant 0 value.

A "dangling output" allert means that an output is not connected to anything.

This is OK if you intended it as we did in this example.
To achieve a full adder we had to discard the cout pin of ADDER3.

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 42/49

The PyCirc package contains a logops module which de�nes a small set of boolean
functions.
These functions are also called boolean operators since

they act on a variable number of boolean values.
return a boolean value.

These operators are needed for designing black box cellscell that play an important role in the
VLSI design process.
Here are a few examples of operators we have in the pycirc package:

AND, OR, NOR, XOR, NOT, MUX.
They all accept an Assign object as an argument,
and return an Assign object.

def AND(a, output="y"):

 o = Assign(output)

 for x in a:

 if a[x] == 0:

 for y in o: o[y] = 0

 return o

 for y in o: o[y] = 1

 return o

def OR(a, output="y"):

 o = Assign(output)

 for x in a:

 if a[x] == 1:

 for y in o: o[y] = 1

Boolean Operators

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 43/49

 return o

 for y in o: o[y] = 0

 return o

def NOR(a, output="y"):

 o = Assign(output)

 o1 = OR(a, Assign("y"))

 b = Assign("x", o1["y"])

 return NOT(b, o)

def XOR(a, output="y"):

 o = Assign(output)

 if sum(a[x] for x in a) == 1:

 for y in o: o[y] = 1

 return o

 else:

 for y in o: o[y] = 0

 return o

Users can easily add more operators in client code.
Here are two examples that we used in the development of pycirc for testing the various 1-bit
counter cells and the cell magnitude comparator cells.cell
The �rst operator is simply a Python code for counting how many 1-bits a given assigmnet
object a has?

Count the number of 1-bits in the assignment a
def COUNT_ONES(a):
 s = sum(a())
 k = len(a).bit_length()
 bits = bin(s)[2:].zfill(k)
 names = "y<%d:1>" % (k,)
 bits = [int(y) for y in bits]
 o = Assign(names, bits)
 return o

Magnitude Comparator Operator
input: "a<0:n>;b<0:n>"
output: "y<1:3>"
If a<b returns 100
If a==b returns 010
If a>b returns 001
def COMPARE(a):

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 44/49

 A = []
 B = []
 for name in a:
 if name[0] == "a":
 A.append(name)
 else:
 B.append(name)
 A = int(a.bits(A), 2)
 B = int(a.bits(B), 2)
 o = Assign("y<1:3>")
 if A<B:
 o.assign("100")
 elif A==B:
 o.assign("010")
 else:
 o.assign("001")
 return o

a = Assign("x<1:5>", "01011")
o = COUNT_ONES(a)
print(o)

y3=0, y2=1, y1=1

Note that the result is in numerical binary form: 011.
The input "01011" has 3 occurrences of the bit 1, which in numerical binary form is 11.

a = Assign("x<1:8>", "11101011")
print("Input:", a.bits())
o = COUNT_ONES(a)
print("Output (binary):", o.bits())
print("Output (decimal):", int(o.bits(), 2))

Input: 11101011
Output (binary): 0110
Output (decimal): 6

Here, the input "11101011" contains 6 bits of 1.
As expected, the output is 110 which is a numerical binary representation of decimal 6.
The following operators do not accept any input but produces a constant output.
These are the constant operators.
The ZERO operator produces 0.

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 45/49

The ONE operator produces 1.
Here are the de�nitions of the ZERO and ONE operators

def ZERO(a=None, output="y"):

 o = Assign(output)

 for y in o: o[y] = 0

 return o

def ONE(a=None, output="y"):

 o = Assign(output)

 for y in o: o[y] = 1

 return o

The Magnitude Comparator operator acts on even length assignments only.
It splits the input to two equal length binary numbers and compares their magnitude.

a = Assign("a<0:7>; b<0:7>", "00101101" + "00110101")
o = COMPARE(a)
print(o)

y1=1, y2=0, y3=0

VLSI design usually means designing very large logic circuits consisting of millions and even
billions of elements.

This is achieved by dividing the main circuit to a dozen or so sub-circuits, usually called
sections.

Each section is divided to a set of smaller cells, usually called cell blocks.

Each block is partitioned to smaller cells, usually called cell functional unit blocks (or fubs for
short).

And �nally, each functional unit is partitioned to smaller cells taken from established cellcell cell
libraries.

This design method is usually called Hierarchical Design.

For example, here is a high level hierarchical view of Intel's Skylake cpu

Creating Cells with the Cell CellCell Class

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 46/49

It consists of roughly 5 billion transistors and 20 billion wires.
In the early design phase, only a small number of the cell designs are available.cell
Many other cells are replaced by "black boxes" that simulate cells, but their full circuit designcell cell
is postponed to a later stage after passing many �re tests that verify the feasibility of the
overall design.
These simulation tests determine many of the desired properties and parameters for these
cells, and thus provide a lot of information and clues needed to design them e�ciently.cell
In such scenarios, a Logic Cell is viewed as a "black box" with entry and exit points that can beCell
de�ned more conveniently by means of simple numerical software algorithms.
PyCirc provides a high level CellCell class for de�ning such cells.cell
So we have two ways to de�ne a new cell:cell

1. By de�ning a PyCirc circuit as in the examples above
2. By de�ning a boolean operator numerically.

A cell de�ned by an operator is named cell black box or box for short.
It is a place holder for a real circuit which is not yet available, but the overall design
need to be tested before it is decided if its design is feasible.

Here is an example of a 4x3 cell that is de�ned by the cell CellCell class.

count3 = Cell(Cell "count3", operator=COUNT_ONES, input="x<1:3>", output="y<1:2>", dept
currently all box type Cells are stored in the dCell efault PyCirc library called pyc
pycircLib.add(count3)

It accepts a 4-bits assignment and outputs a 3-bits assignment.

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 47/49

It counts the number of 1-bits in the input.

The operator COUNT_ONES was de�ned in the section above.

We can now use count3 as a cell type and use it to de�ne more complex cells.cell cell

As an example, let's de�ne a COUNT6 circuit by using two gates of type COUNT3.

The plan is straightforward:

COUNT6 accepts 6 input bits: x1, x2, x3, x4, x5, x6.
The �rst 3 bits x1, x2, x3, are assigned to the gate c1 whose type is COUNT3.
The last 3 bits x4, x5, x6, are assigned to the gate c2 whose type is also COUNT3.
The outputs of c1 and c2 are sent to gate a which is a FULL_ADDER2.
The gate a is adding up the two numbers and sends its output to y1, y2, y3.

Here is the PyCirc Program for the COUNT6 circuit.

Define("count6")
GATE("x<1:6>", type="inp")
GATE("y<1:3>", type="out")
GATE("c1", type="count3") # Gate "c1" of type count3
GATE("c2", type="count3") # Gate "c2" of type count3
GATE("a", type="full_adder2")

WIRE("x<1:3>", "c1/x<1:3>")
WIRE("x<4:6>", "c2/x<1:3>")
WIRE("c1/y1", "a/a1")
WIRE("c1/y2", "a/a0")
WIRE("c2/y1", "a/b1")
WIRE("c2/y2", "a/b0")
WIRE("a/y<2:0>", "y<1:3>")
EndDef()

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 48/49

Cell = count6: Validity check: OK.Cell
<pycirc.pycirc.PyCirc at 0x7f011d396b50>

Here is the Python code for adding some of the box cells in cell PyCirc.

See the factory module in the PyCirc package for more examples.

pycircLib.add_box(name="and2", operator=AND, input="x<1:2>", output=["y"])

pycircLib.add_box(name="and3", operator=AND, input="x<1:3>", output=["y"])

pycircLib.add_box(name="and4", operator=AND, input="x<1:4>", output=["y"])

pycircLib.add_box(name="and5", operator=AND, input="x<1:5>", output=["y"])

pycircLib.add_box(name="and6", operator=AND, input="x<1:6>", output=["y"])

pycircLib.add_box(name="and7", operator=AND, input="x<1:7>", output=["y"])

pycircLib.add_box(name="and8", operator=AND, input="x<1:8>", output=["y"])

We can also use Python loops to add box cells to our cell library.cell cell

The following Python loop, adds 32 box cellls to the cell PyCirc cell librarycell

8 OR box cells: cell OR2, OR3, ..., OR8
8 XOR box cells: cell XOR2, XOR3, ..., XOR8
8 NOR box cells: cell NOR2, NOR3, ..., NOR8

for k in range(2,9):

 inp = "x<1:%s>" % (k,)

 name = "or" + str(k)

 pycircLib.add_box(name, operator=OR, input=inp, output=["y"])

 name = "xor" + str(k)

 pycircLib.add_box(name, operator=XOR, input=inp, output=["y"])

 name = "nor" + str(k)

 pycircLib.add_box(name, operator=NOR, input=inp, output=["y"])

 name = "nand" + str(k)

 pycircLib.add_box(name, operator=NAND, input=inp, output=["y"])

For the more experienced students we present here some more advanced usage of the PyCirc
package will be added within the near future. To be contniued ...

Advanced Topics -- To be Continued ...

4/4/22, 3:26 AM pycirc.ipynb - Colaboratory

https://colab.research.google.com/drive/1QIl2T4f4rfKTMQu3kHjtN-YZFAmg2Iv2#scrollTo=lH0of2Ny6D5K&printMode=true 49/49

 0s completed at 8:57 PM

from IPython.display import HTML
from urllib.request import urlopen
css = urlopen("https://samyzaf.com/css/pycirc.css").read().decode('utf-8')
HTML('<style>{}</style>'.format(css))

