
 2004 Ralph Noack 1

An Incremental Introduction to Python

Ralph Noack
Mechanical Engineering Department

University of Alabama at Birmingham

 2004 Ralph Noack 2

What is Python?

• A programming language named after the BBC show
"Monty Python's Flying Circus".

• "Python is an easy to learn, powerful programming
language. It has efficient high-level data structures and a
simple but effective approach to object-oriented
programming. Python's elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal
language for scripting and rapid application development
in many areas on most platforms." Guido van Rossum

 2004 Ralph Noack 3

Why use Python?

• Easy to learn: Clear, simple, and elegant syntax make it an easy
language to learn.

• Readability: Python's clear and elegant syntax, and emphasis on proper
indentation of code blocks, improves code readability

• Conciseness: Programs written in Python are typically much shorter
than equivalent C or C++ programs.

• Object oriented framework:
– Built from the ground up as an object oriented language

• Extensibility: Python makes it easy to add new capabilities to your
code

• Portability: Python distributions are available for a wide variety of
operating systems

• Open licensing model: Python is available for free

 2004 Ralph Noack 4

Why Teach Python?
• Quoting Quido:

– Easy to teach the principles
• see trees through forest
• structured programming
• object-oriented programming
• programming large systems

– Interesting, realistic examples
• connect to real applications

• Simple to learn. Clean syntax.
• Low overhead.

– Do not have to learn/type as much as other languages
• Has power to do complex tasks.
• Can focus on learning to program without having to learn a complex

language.
• Can learn object oriented programming with minimal overhead

 2004 Ralph Noack 5

Example Java vs Python

• Java
public class HelloWorld {
public static void main(String [] args) {
System.out.println("Hello, world.");

}
}

• Python
print "Hello, world."

 2004 Ralph Noack 6

About this Tutorial

• We will attempt to teach the highlights of the language
• There are many concepts and capabilities that will not be

covered
• The intent is to introduce you to python and let you begin

to write some python programs
• We’ll incrementally introduce syntax and concepts
• Won’t cover all the details but will cover enough to get

you started
• The full details and rest of the capability can be learned as

you continue to use python

 2004 Ralph Noack 7

Where to get Python

• Web site is http://www.python.org
– Download latest source
– Precompiled binaries for easy install are available for Windows
– Lots of documentation and other useful packages

• Python is installed by default in most Linux distributions.

 2004 Ralph Noack 8

Python Resources
• http://www.python.org
• http://www.python-eggs.org
• Numerous tutorials/articles on web sites
• Good books for learning Python

– Learning Python, Mark Lutz, David Ascher, ISBN 1565924649
– The Quick Python Book, Daryl D. Harms, Kenneth McDonald, ISBN

1884777740
• Python reference books

– Python in a Nutshell, Alex Martelli, ISBN 0596001886
– Python Essential Reference, David Beazley, ISBN 0735710910
– Python Cookbook, Alex Martelli, David Ascher, ISBN 0596001673

• Tkinter programming
– Python and Tkinter Programming, John E. Grayson, ISBN 1884777813

 2004 Ralph Noack 9

Running Python

At the command prompt type:
python
Prints version and copyright information and python prompt

">>>"

Python 1.5.2 (#1, Jan 31 2003, 10:58:35) [GCC 2.96
20000731 (Red Hat Linux 7.3 2 on linux-i386

Copyright 1991-1995 Stichting Mathematisch Centrum,
Amsterdam

>>>

 2004 Ralph Noack 10

Use python as a calculator

>>> 2+2

4

>>> # a pound sign # starts a comment, prompt
will change after it

... 2+3

5

>>> 2.0+3.0

5.0

>>> # python automatically determines if the
number is an integer or floating point value

... 2.0+3.0

5.0

>>> 2+3.0

5.0

 2004 Ralph Noack 11

Use python as a calculator

>>> 2*3 # you can add a comment on the same line
as code

6

>>> 6/2

3

>>> 6.5/2

3.25

>>> 7/2

3

 2004 Ralph Noack 12

Python has the usual set of math operators

+ for addition - for subtraction
* for multiplication / for division
** for exponentiation
and others
>>> 2**3

8

• There are precedence rules for mixed expressions
• Use parentheses to force a particular order
>>> 1+2*3

7

>>> (1+2)*3

9

 2004 Ralph Noack 13

Command line editing

• You can recall previous commands to use as the current
input and edit the current line of input.

• The up arrow or the Control-p key moves up to the
previous input line.

• The down arrow or the Control-n key moves down to the
next input line.

• The left arrow or the Control-b key moves the cursor to the
left on the input line.

• The right arrow or the Control-f key moves the cursor to
the left on the input line.

 2004 Ralph Noack 14

Command line editing

• The backspace key will delete the character to the left of
the cursor.

• The Control-d key will delete the character under the
cursor.

• The Control-a key will move the beginning of a line.
• The Control-e key will move the end of a line.
• The cursor does not have to be at the end of the line to

press the Enter key to accept the input.

 2004 Ralph Noack 15

Variables
• A variable is a name that can hold a value
• You assign a value to the name on the left of an =
• Case sensitive SPAM, spam, Spam are all different

variables
• Names are created when first assigned
>>> a=2

>>> b=3

>>> B=6

>>> a+b

5

>>> a+B

8

 2004 Ralph Noack 16

Variables
• Cannot use a name that has not been created/assigned
>>> q

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name 'q' is not defined

• Certain words (reserved words) cannot be used as variable
names

>>> if=2

File "<stdin>", line 1

if=2

^

SyntaxError: invalid syntax

 2004 Ralph Noack 17

Variables
• Notice that no declaration of variable type is required.

– Some languages require you to declare a variable and its type
Fortran: integer i

real a
C: int i; float a;

• Python automatically determines the type of a variable
– Use float(), int() to convert a type

>>> a=2.5

>>> b=4

>>> b/int(a)

2

>>> a=3

>>> b=2

>>> a/float(b)

1.5

 2004 Ralph Noack 18

Complex Numbers

• Complex numbers have a real component and an
"imaginary" component.

• The imaginary component multiplies j=sqrt(-1)
• In python you can write a complex number as (real+imagj)
• or use the function: complex(real, imag)

>>> 1+2j

(1+2j)

>>> 1j*1j

(-1+0j)

>>> (2+3j)*complex(1,2)

(-4+7j)

 2004 Ralph Noack 19

Complex Numbers

• To extract real and imaginary parts from a complex
number a, use a.real and a.imag.

>>> a=(2+3j)

>>> b=complex(1,2)

>>> a.real

2.0

>>> a.imag

3.0

>>> b.real

1.0

>>> b.imag

2.0

 2004 Ralph Noack 20

Complex Numbers

• Get the magnitude of the complex number with abs() =
sqrt(a.real*a.real+a.imag*a.imag)

>>> abs(a)

3.6055512754639891

>>> abs(b)

2.2360679774997898

 2004 Ralph Noack 21

Strings

• Python strings are enclosed in single ' or double " quotes:
>>> "hello world"

'hello world'

>>> 'hello world'

'hello world'

• Can assign a string to a variable:
>>> hello="Hello World!"

>>> print hello

Hello World!

 2004 Ralph Noack 22

Strings

• Can include special characters in the string.
>>> hello="Hello\nWorld!"

>>> print hello

Hello

World!

• The usual special characters are:
"\n" newline
"\r" carriage return
"\t" horizontal tab

 2004 Ralph Noack 23

Long strings

• Enclose them in triple quotes, either double quote
character: """ or single quote character: '''

>>> hello="""This is a long line

... spread across multiple lines

... notice the indentation/leading white space"""

>>> print hello

This is a long line

spread across multiple lines

notice the indentation/leading white space

 2004 Ralph Noack 24

Long strings

>>> hello="This is another long string\n\
... also spread across multiple lines\n\
... Use the trailing backslash to escape or hide the trailing

newline\n\
... Need the embedded newlines to get the lines to split"
>>> print hello
This is another long string
also spread across multiple lines
Use the trailing backslash to escape or hide the trailing

newline
Need the embedded newlines to get the lines to split

 2004 Ralph Noack 25

String concatenation

• Join two strings with the + operator
>>> a="first string-"

>>> b='second string'

>>> a+b

'first string-second string'

 2004 Ralph Noack 26

Extracting substrings

• Python strings can be subscripted to extract a substring.
• First character is at index 0
• Length of the string is given by len() function
>>> s="123456"

>>> print s[0]

1

>>> print len(s)

6

 2004 Ralph Noack 27

Extracting substrings

• Substring specified using the slice notation: first
index:second index

>>> s[0:2]

'12'

>>> s[3:5]

'45'

 2004 Ralph Noack 28

Extracting substrings

• Empty first index is the same as 0
• Empty second index is the same as the string length
>>> s[0:3]

'123'

>>> s[:3]

'123'

>>> s[3:len(s)]

'456'

>>>

>>> s[3:]

'456'

>>>

 2004 Ralph Noack 29

Extracting substrings

• Can use negative numbers: Counts backwards from the
upper bound

>>> s[-1]

'6'

>>> s[-2:]

'56'

>>> s[:-4]

'12'

>>> s[-6:-1]

'12345'

 2004 Ralph Noack 30

Extracting substrings

• Think of the slice indices as pointing between characters.
• The left edge of the first character is numbered 0.
• The right edge of the last character of a string of n

characters has index n.
• Consider “123456”

+---+---+---+---+---+---+

| 1 | 2 | 3 | 4 | 5 | 6 |

+---+---+---+---+---+---+

0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

 2004 Ralph Noack 31

Python strings are immutable
• Python strings are immutable (cannot be changed)
>>> s=‘123456’

>>> s[0]='0'

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object doesn't support item assignment

• Create a new string to achieve the same effect
>>> t='0' + s[1:]

>>> print t

023456

 2004 Ralph Noack 32

Changing into a string
• Cannot append a non-string with a string
>>> a='a string'

>>> b=5.0

>>> a+b

Traceback (innermost last):

File "<stdin>", line 1, in ?

TypeError: illegal argument type for built-in
operation

• Can create a string representation of a non-string
by using the str() function

>>> a+str(b) + "-"+ str(1.0)

'a string5.0-1.0'

 2004 Ralph Noack 33

Formatting into a string
• You can create a string from other objects with a

formatting operation.
• Specify a format string and the list of objects to be used in

the formatting:
– Format % tuple of arguments

>>> "an integer %d a floating point number %f" %
(1,2.0)

'an integer 1 a floating point number 2.000000'

 2004 Ralph Noack 34

Formatting Codes
• The formatting string uses codes to determine where to

place the representation of the value
• The code must match the type of object
• Available codes:

Floating-point number%gOctal Integer%o

Floating-point number%gUnsigned Integer%u

Floating-point number%fInteger%i

Literal %%%Hex Integer%x

Floating-point number%EDecimal integer%d

Floating-point number%eCharacter%c
Hex integer (uppercase)%XString%s

 2004 Ralph Noack 35

Formatting Codes
>>> "%c %c"%('a',100)

'a d'

>>> "%e %E %f %g %G"%(1.0,2.0,3.0,4.0e5,4.0e15)

'1.000000e+00 2.000000E+00 3.000000 400000 4E+15'

>>>"unsigned int of %d is %u"%(-3,-3)

'unsigned int of -3 is 4294967293‘

>>>’for the integer %d octal=%o hex=%x’%(
123456,123456,123456)

'for the integer 123456 octal=361100 hex=1e240'

 2004 Ralph Noack 36

Python Lists

• The Python list is used to group together other values.
• The list is written as a list of comma-separated values

(items) between square brackets.
• List items need not all have the same type.
>>> a=[1,2,3,4,5]

>>> print a

[1, 2, 3, 4, 5]

>>> b=[1,'two',3j,"FOUR",5]

>>> print b

[1, 'two', 3j, 'FOUR', 5]

 2004 Ralph Noack 37

Python Lists

• List indices start at 0, can be sliced, and
concatenated:

>>> print a[0]

1

>>> print a[0:2]

[1, 2]

>>> ab = a[0:2] + b[-3:]

>>> print ab

[1, 2, (1+3j), 'FOUR', 5]

 2004 Ralph Noack 38

Python Lists

• A list can hold any other Python object.
• A list with each item being another list creates a doubly

subscripted list/array.
>>> c=[[0,1,2],[3,4,5],[6,7,8]]

>>> print c

[[0, 1, 2], [3, 4, 5], [6, 7, 8]]

>>> print c[0]

[0, 1, 2]

>>> print c[0][0]

0

>>> print c[1][0]

3

>>> print c[2][0]

6

 2004 Ralph Noack 39

Python Lists are mutable

• Python lists can be changed
>>> c=[[0,1,2],[3,4,5],[6,7,8]]

>>> c[1]="python is great"

>>> print c

[[0, 1, 2], 'python is great', [6, 7, 8]]

• Lists can be extended by appending a new value to
the list

>>> c.append("a new item")

>>> print c

[[0, 1, 2], 'python is great', [6, 7, 8], 'a new item']

 2004 Ralph Noack 40

Python Lists are mutable
• Use the insert method to add an item in the middle of a list.
• Index refers to the location between items like slicing.
>>> c.insert(2,"and easy to learn")

>>> print c

[[0, 1, 2], 'python is great', 'and easy to learn', [6,
7, 8], 'a new item']

• The len() function gives you the length of the list.
>>> print len(c)

5

• There are other functions that will operate on a list:
– del, sort(), reverse(), and others

 2004 Ralph Noack 41

Pre-allocate a list

• If you know the size of the list beforehand you can create
the list with the desired length

• Create it with: [anyvalue]*desiredLenth
• [0]*n or [1]*n
>>> n=5 # the desired/maximum length of the list

>>> a=[0]*n

>>> print a

[0, 0, 0, 0, 0]

>>> print len(a)

5

>>> b=[1]*n

>>> print b

[1, 1, 1, 1, 1]

 2004 Ralph Noack 42

Other functions that will operate on a list
• del list will remove the whole list

– Remove an item from a list
>>> a=[1,2,3,4,5]

>>> del a[3]

>>> print a

[1, 2, 3, 5]

>>> del a[0]

>>> print a

[2, 3, 5]

– Will also delete a slice from a list
>>> a=[1,2,3,4,5]

>>> del a[1:3]

>>> print a

[1, 4, 5]

 2004 Ralph Noack 43

Other functions that will operate on a list
• reverse()

– Reverses the list in place
>>> a=[1,2,3,4,5]

>>> a.reverse()

>>> print a

[5, 4, 3, 2, 1]

• sort()
– Sorts the list in place

>>> a=[1,2,3,4,5]

>>> a.reverse()

>>> print a

[5, 4, 3, 2, 1]

>>> a.sort()

>>> print a

[1, 2, 3, 4, 5]

 2004 Ralph Noack 44

Tuples

• Tuples are lists that are immutable/cannot be changed.
• Create a tuple by enclosing the list in parentheses ()
• In some cases do not need the parentheses.
>>> t=(1,2,3,4,5,6)

>>> print t

(1, 2, 3, 4, 5, 6)

>>> p=1,2,3,4,5,6

>>> print p

(1, 2, 3, 4, 5, 6)

 2004 Ralph Noack 45

Tuples

• Single item needs trailing comma to indicate that it is a
tuple:

>>> one=(1,)

>>> print one

(1,)

>>> one=1,

>>> print one

(1,)

 2004 Ralph Noack 46

Tuples

• Use indexing and slicing just like lists
>>> print p[0]

1

>>> print p[2:]

(3, 4, 5, 6)

 2004 Ralph Noack 47

Tuples

• Cannot change or extend a tuple
>>> p=1,2,3,4,5,6

>>> p[2]='this will not work'

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object doesn't support item assignment

>>> p.append("appending to a tuple will not
work")

Traceback (most recent call last):

File "<stdin>", line 1, in ?

AttributeError: 'tuple' object has no attribute
'append'

 2004 Ralph Noack 48

Python Dictionaries

• Lists and tuples are an ordered collection of objects.
– Indexed by an integer

• Dictionaries are an unordered collection of objects.
– Indexed by a key, which can be anything.

• Very powerful. Greatly simplifies certain tasks.
• Sometimes called a hash table.
• A foundational data structure for python.
• Declare a dictionary with curly braces.
• An empty dictionary is created by an empty set of braces

{}.
• Specify a particular item with dictionary[key]

 2004 Ralph Noack 49

Python Dictionaries

• Can add an item by assignment:
>>> d={} # an empty dictionary

>>> d["first item"]="ONE" # add an item

>>> print d

{'first item': 'ONE'}

• Value to left of colon is the key, value to the right
of colon is the item.
– the key is 'first item‘ and 'ONE‘ is the value assigned to

the key

 2004 Ralph Noack 50

Python Dictionaries
• Can create a non-empty dictionary by specifying key:value

pairs:
>>> e={'first':1,'second':2, 3:3}

>>> print e

{'second': 2, 3: 3, 'first': 1}

• Notice that the order is not guaranteed.
>>> print e['first']

1

>>> print e[3]

3

• len() function returns the number of items in the dictionary
>>> print len(e)

3

 2004 Ralph Noack 51

Python Dictionaries
• The keys() method returns a list of all the keys in

the dictionary:
>>> e={'first':1,'second':2, 3:3}

>>> print e.keys()

['second', 3, 'first']

 2004 Ralph Noack 52

Python Dictionaries
• Can also use dictionaries as multidimensional arrays
>>> a={}

>>> a[1,2]=1

>>> a[2,2]=2

>>> a[1,1]=3

>>> print a

{(1, 1): 3, (1, 2): 1, (2, 2): 2}

– Notice that the key is a tuple
>>> i=2

>>> print a[1,i]

1

>>> print a[i,i]

2

>>> print a[1,1]*a[i,i]

6

 2004 Ralph Noack 53

Conditionals

• A conditional is an expression that indicates True or False.
• Any non-zero value is True.
• A zero value or empty list is False.
• Python also has a special object/value called None that is

also interpreted as False
• Conditional operators:

– a == b is true if a is equal to b
– a != b is true if a is not equal to b
– a > b is true if a is greater than b
– a < b is true if a is less than b
– a >= b is true if a is greater than or equal to b
– a <= b is true if a is less than or equal to b

 2004 Ralph Noack 54

Conditionals

>>> print 1 == 1

1

>>> print 1 == 2

0

>>> print 1 != 2

1

>>> print 1 > 2

0

>>> print 1 < 2

1

 2004 Ralph Noack 55

Boolean Expressions

• Boolean expressions are used to combine conditional
expressions to produce more complex conditionals.
– a or b is true if a or b is true.

• If a is true then b is not evaluated.
– a and b is true if a and b is true.

• If a is not true then b is not evaluated.
– not a is true if a is false (not true).
– where a and b can be any conditional expression.

• Can use parentheses for grouping.
– (a or b) and (d and e)

 2004 Ralph Noack 56

Boolean Expressions

>>> (1 == 1) and (2 == 2)

1

>>> (1 == 1) and (2 == 1)

0

>>> (1 == 1) or (2 == 1)

1

>>> not (1 == 1)

0

>>> not (2 == 1)

1

 2004 Ralph Noack 57

Boolean Expressions

• Can use a variable as the conditional
>>> a=100

>>> a and (1 == 1)

1

>>> a or (1 == 2)

1

>>> a and (1 == 2)

0

 2004 Ralph Noack 58

Blocks of code

• Python uses indentation to determine if a set of statements
are in a block of code.

• Statements that are indented to the same level are
associated with the same block of code.

• This improves the readability of the code.

 2004 Ralph Noack 59

Flow control

• A useful program will require decisions or branching to
occur.

• Examples:
– If the temperature is greater than 79 degrees turn the air

conditioner on.
– While the speed is less than 55 increase the throttle setting.
– For each student in the class, print their last test score

 2004 Ralph Noack 60

if statement
• The if statement determines if a block of associated code will be

executed.
• The end of the if statement is indicated by the colon character.
• The block is executed if the conditional is evaluated to be True.
• The block is terminated by the first statement at the previous

indentation level.
• Syntax:

if conditional:
statements

>>> if 1 == 1:

... print "this is true"

...

this is true

 2004 Ralph Noack 61

if statement
• The general if statement is
if <test1>:

<statements1>
elif <test2>:

<statements2>
else:

<statements3>
• elif is a contraction for else if
• The elif conditional is tested if the test1 is false and the

block of statements following the elif is executed if the
conditional evaluates to true.

• Likewise the statements following the else statement are
executed if none of the prior conditionals were true.

 2004 Ralph Noack 62

if statement
>>> if 1 == 2:

... print "is 1 == 2"

... elif 3 < 4:

... print "but we know 3 is less than 4"

...

but we know 3 is less than 4

>>> a=0

>>> b=None

>>> if a:

... print "first test was true"

... elif b:

... print "second test was true"

... else:

... print "none of the tests were true"

...

none of the tests were true

 2004 Ralph Noack 63

Colon Character indicates a new block

• As we have seen in the previous statements the colon
character “:” is used to terminate certain statements

• These statements all precede a new block of code
• The new block of code will be indented relative to the

originating statement
• Other statements to be discussed will also be consistent

with this syntax
• So if you know that you are going to start a new block of

code then the preceding statement must end with a colon

 2004 Ralph Noack 64

Looping with while

• The first looping statement is the while loop.
while <test>:

<statements>
else:

<statements2>
• The condition is first evaluated and if it is true the block of

statements is executed. Then the code loops back to the
while statement and begins again.

• The statements following the else are executed if the loop
terminates normally.

 2004 Ralph Noack 65

Looping with while
>>> a=0

>>> while a < 10:

... print a

... a=a+1

...

0

1

2

3

4

5

6

7

8

9

 2004 Ralph Noack 66

Looping with while
>>> a=0

>>> while a < 10:

... print a

... a=a+1

... else:

... print "the final value of a is",a

...

0

1

2

3

4

5

6

7

8

9

the final value of a is 10

 2004 Ralph Noack 67

Break out of while loop
• The break statements cause the looping to terminate and the optional

else statements are skipped.
• while 1: is an infinite loop. Must use a break to exit the loop
>>> a=0

>>> while 1:

... if a >= 6:

... break

... print a

... a=a+1

... else:

... print "the loop terminated normally"

...

1

2

3

4

5

 2004 Ralph Noack 68

Continue within while loop
• The continue statement transfers the execution back to the

top of the loop.
>>> a=0

>>> while 1:

... a=a+1

... if a < 4:

... continue

... print a

... if a > 10:

... break

...

4

5

6

7

8

9

10

11

 2004 Ralph Noack 69

for loop

• The Python for loop iterates over the items in any sequence
in the order they appear in the sequence

• Think of it as: for each item in the list
for <target> in <object>:

<statements>
else:

<statements executed if terminate normally>
• The <target> is a variable that is assigned a value from the

sequence defined by <object>. The <object> is normally a
list or tuple.

 2004 Ralph Noack 70

for loop
>>> for x in [1,2,3,4,5]:

... print x

... else:

... print "for loop terminated normally"

...

1

2

3

4

5

for loop terminated normally

 2004 Ralph Noack 71

for loop
>>> a={"A":1,"B":2,"C":"last value"}

>>> for key in a.keys():

... print "The value for key",key,"is",a[key]

...

The value for key A is 1

The value for key C is last value

The value for key B is 2

>>> for key in a.keys():

... if key == "D":

... break

... else:

... print "Did not find the desired key!"

...

Did not find the desired key!

 2004 Ralph Noack 72

Using Range() function with for loop
• Can use the range() function to create a list of

numbers.
>>> b=['a','b','c','d']

>>> print len(b)

4

>>> print range(len(b))

[0, 1, 2, 3]

>>> range(5)

[0, 1, 2, 3, 4]

>>> range(2,5)

[2, 3, 4]

 2004 Ralph Noack 73

Using Range() function with for loop
>>> b=['a','b','c','d']

>>> for i in range(len(b)):

... print i,b[i]

...

0 a

1 b

2 c

3 d

 2004 Ralph Noack 74

Break and Continue with for loop
• In the same way as they did for the while loop

– The break statement terminates the for loop
– The continue statement transfers the execution back to the top of the for

loop.
>>> for a in range(20):

... if a < 6:

... continue

... print a

... if a > 9:

... break

...

6

7

8

9

10

 2004 Ralph Noack 75

Creating a script file
• Use a text editor to create a new file.
• On Linux/Unix the first line can specify the

command/shell that will be used to run the script/program.
• You begin the first line of the file with #! and follow that

with the path of the program to be used to run the script.
• For example:
#!/usr/bin/python

 2004 Ralph Noack 76

Creating a script file
• The python program may be stored in different locations

on different systems.
• The following will find the python executable in your path

and run it.
#!/usr/bin/env python

 2004 Ralph Noack 77

Creating a script file
• Add the lines to your file
#!/usr/bin/env python

print ‘Hello from python!’

• Save the file as hello.py
• Go to a command line prompt
• Run the script with:
python hello.py

 2004 Ralph Noack 78

Make the script file executable
• Now make the script executable with:
chmod 755 ./hello.py

• Now you can run the script without specifying the python
executable:

./hello.py

 2004 Ralph Noack 79

More on print
• A print statement with a trailing comma will suppress the

end of line characters, leaving the next print position on the
same line:

print ‘hello world’

print ‘hello’.

print ‘world’

 2004 Ralph Noack 80

More on print
#!/usr/bin/env python

print "Hello from python!"

print "Hello"

print "from"

print "python!"

print "Hello",

print "from",

print "python!"

for i in range(5):

print i,

print "end of line"

 2004 Ralph Noack 81

Functions
• A function is a block of code that is executed by calling the

function name with optional arguments.
• Defines a unit of work that helps to modularize the code

and promotes code reuse.
• The keyword def introduces a function definition.

– def name(parameters):
• It is followed by the function name and the parenthesized

list of parameters to the function.
• The colon character terminates the function declaration

line.
• The block of statements that form the body of the function

start at the next line.
• Remember that indentation within Python defines a block

of code.

 2004 Ralph Noack 82

Function Arguments
• The parameters or arguments passed to a function call are

added to the symbol table/name space local to the called
function
– Arguments are passed using call by value
– An object reference is passed when the parameter is an object

>>> def a(b):

... b=1

... print b

...

>>> d=2

>>> a(d)

1

>>> print d

2

 2004 Ralph Noack 83

Pass and the Simplest Function
• A function begins with the function definition and is

followed by a block of code.
• pass is a python statement that does nothing
• The simplest function is:
def noop():

pass

• The pass statement acts as a placeholder to create a block
of code where needed but does not do anything

• This is good for creating a function template that will be
expanded into something useful at another time

 2004 Ralph Noack 84

Functions and Docstrings
• The first statement of the function body can

optionally be a string literal, which is the
function's documentation string, or docstring.

• There are tools within Python to extract the
docstrings so it is good practice to document the
code.

def myFunction(param1,param1):

‘’’This is the docstring for myFunction’’’

 2004 Ralph Noack 85

Functions and Docstrings
• The return statement within a function terminates

the execution of the function and returns a value
from a function to the calling routine.

• Examples:
return "hello world"

return 1

• return without an expression argument returns
None.

• Falling off the end of a function also returns None.

 2004 Ralph Noack 86

Calling a Function
• Call a function by specifying the name and enclose in

parentheses any parameters to be passed to the function
• Need the parentheses even if there are no arguments to be

passed
• dir() is a built-in function in python
• If you do not include the () you will get the string

representation for the dir function:
>>> print dir

<built-in function dir>

• Include the parentheses and you get the function output:
>>> print dir()

['__builtins__', '__doc__', '__name__', 'a', 'b']

 2004 Ralph Noack 87

Create a Function
• We'll now create a function called Adder that:

– Accepts a list(or tuple) as a single argument
– Sums each of the items in the list,
– Returns the final sum.

• Save the file with the name Adder.py
• Try calling the function with a list of numbers:
sum1=Adder([1,2,3,4,5])

print sum1

• Then try it with a list of characters:
sum2=Adder(['a','b','c','d','e'])

print sum2

• Then with a string:
sum3=Adder("abcdefg")

print sum3

 2004 Ralph Noack 88

Function Adder
def Adder(list):

‘’’This function will add up the elements in
the list and return the final value’’’

 2004 Ralph Noack 89

Function Adder
def Adder(list):

‘’’This function will add up the elements in
the list and return the final value’’’

init the sum to the first value

 2004 Ralph Noack 90

Function Adder
def Adder(list):

‘’’This function will add up the elements in
the list and return the final value’’’

init the sum to the first value

sum=list[0]

 2004 Ralph Noack 91

Function Adder
def Adder(list):

‘’’This function will add up the elements in
the list and return the final value’’’

init the sum to the first value

sum=list[0]
for each element in the list,
skip the first one since we
initialized the sum with it

 2004 Ralph Noack 92

Function Adder
def Adder(list):

‘’’This function will add up the elements in
the list and return the final value’’’

init the sum to the first value

sum=list[0]
for each element in the list,
skip the first one since we
initialized the sum with it
for item in list[1:]:

 2004 Ralph Noack 93

Function Adder
def Adder(list):

‘’’This function will add up the elements in
the list and return the final value’’’

init the sum to the first value

sum=list[0]
for each element in the list,
skip the first one since we
initialized the sum with it
for item in list[1:]:

add the element to the sum

 2004 Ralph Noack 94

Function Adder
def Adder(list):

‘’’This function will add up the elements in
the list and return the final value’’’

init the sum to the first value

sum=list[0]
for each element in the list,
skip the first one since we
initialized the sum with it
for item in list[1:]:

add the element to the sum
sum = sum + item

 2004 Ralph Noack 95

Function Adder
def Adder(list):

‘’’This function will add up the elements in
the list and return the final value’’’

init the sum to the first value

sum=list[0]
for each element in the list,
skip the first one since we
initialized the sum with it
for item in list[1:]:

add the element to the sum
sum = sum + item

return the sum

 2004 Ralph Noack 96

Function Adder
def Adder(list):

‘’’This function will add up the elements in
the list and return the final value’’’

init the sum to the first value

sum=list[0]
for each element in the list,
skip the first one since we
initialized the sum with it
for item in list[1:]:

add the element to the sum
sum = sum + item

return the sum
return sum

 2004 Ralph Noack 97

Function Adder
def Adder(list):

‘’’This function will add up the elements in the
list and return the final value’’’

init the sum to the first value

sum=list[0]
for each element in the list,
skip the first one since we
initialized the sum with it
for item in list[1:]:

add the element to the sum
sum = sum + item

return the sum
return sum

sum1=Adder([1,2,3,4,5])

print sum1

print Adder(['a','b','c','d','e'])

print Adder("abcdefg")

 2004 Ralph Noack 98

Default Function Arguments
• Function arguments can have specified default values

– def myFun(arg1,arg2=1,arg3=“default”,arg4=None):

• When calling the function you do not need to specify the
argument if the default is correct.

• All the following will have the same effect
– myFun(0)
– myFun(0,1)
– myFun(0,1,”default”)
– myFun(0,1,”default”,None)

 2004 Ralph Noack 99

Using Keyword Arguments
• You can also pass arguments to a function call by

specifying: keyword=value
• All non-keyword arguments must appear before any

keyword arguments
def myFun(arg1,arg2=1,arg3=‘default’,arg4=None):

• The following are valid
myFun(0,arg3=‘notdefault’,arg2=6)

myFun(0,arg4=100)

• The following are invalid
non-keyword arg follows a keyword argument

myFun(arg3=‘newdefault’,2)

#did not specify the non-keyword arg

myFun(arg4=[1,2,3])

 2004 Ralph Noack 100

Using Keyword Arguments
>>> def myFun(arg1,arg2=1,arg3='default',arg4=None):
... print "args are",arg1,arg2,arg3,arg4
...
>>> myFun(2)
args are 2 1 default None
>>> myFun(arg3=1,2)
SyntaxError: non-keyword arg after keyword arg
>>> myFun(3,arg3=1,arg2="hello")
args are 3 hello 1 None

 2004 Ralph Noack 101

More on Keyword Arguments
• You can use the keyword arguments to get a

dynamically variable number of acceptable
arguments

• If the last argument in the function definition
begins with ** then any remaining keyword
arguments are placed in a dictionary

>>> def myFun(arg1,arg2=None,**kwargs):

... print arg1,arg2

... for key in kwargs.keys(): print
key,kwargs[key]

...

>>> myFun(1,arg2="a",arg3="b",arg4="c")

1 a

arg3 b

arg4 c

 2004 Ralph Noack 102

Programming Models
• Monolithic:

– Old style programming
– Everything in one file and one routine
– Good for small, simple programs

• Procedural:
– Most common style of programming
– May have lots of globally accessible data
– Data and Procedures are separated
– Procedures/Functions/Subroutines that act on the data
– Good for libraries or when do not have lots of things

with distinct behavior
– Any procedure can change the data

 2004 Ralph Noack 103

Programming Models
• Object Oriented:

– Newest style of programming
– Package of data and behavior/methods that act on the

data
– Data hiding: object methods are only way to interact

with the data
– Little if any globally accessible data
– Ideal when you have lots of things with distinct

behavior

 2004 Ralph Noack 104

Python Modules
• We have created created a script file that defines our Adder

function and then uses the function
• We would like to make this function available to other

scripts
• The Python way is to create a module: a file that contains

variable and/or function definitions
• Python includes a standard library with MANY modules

that extend the capability and simplify tasks
• The main module is the collection of variables that you

have access to in a script executed at the top level and
when running the interpreter interactively

 2004 Ralph Noack 105

Python Modules
• The file name of a module is the module name with “.py”

appended.
– myModule is contained in the file myModule.py

• Within a module, the variable __name__ contains the
module's name as a string

• You make the module available to python using the import
statement:
– import myModule

• You can use variables and functions in a module by
prefixing them with the module name:
– Sum=myModule.functionName()

• You can avoid having to prefix by the module name by
using
– from myModule import *
– Sum=functionName()

 2004 Ralph Noack 106

Python Modules
• Modules can import other modules
• A module can contain executable statements as well as

function definitions.
• These statements are intended to initialize the module.
• They are executed only the first time the module is

imported somewhere

 2004 Ralph Noack 107

dir() function
• The built-in function dir() is used to find out which names

a module defines. It returns a sorted list of strings
>>> dir()

['__builtins__', '__doc__', '__name__']

>>> a=1

>>> dir()

['__builtins__', '__doc__', '__name__', 'a']

>>> def myfun():

... print "hello"

...

>>> dir()

['__builtins__', '__doc__', '__name__', 'a',
'myfun']

>>> print __name__

__main__

 2004 Ralph Noack 108

Python Modules
• Take your Adder.py script and add the following at the

end:
print "dir() returns",dir()

print "__name__ = ",__name__

 2004 Ralph Noack 109

Python Modules
• Run as a script:
./Adder.py

15

abcde

abcdefg

dir() returns ['Adder', '__builtins__',
'__doc__', '__name__', 'sum1', 'sum2', 'sum3']

__name__ = __main__

 2004 Ralph Noack 110

Python Modules
• Import as a module from interactive python:
>>> import Adder

15

abcde

abcdefg

dir() returns ['Adder', '__builtins__',
'__doc__', '__file__', '__name__', 'sum1',
'sum2', 'sum3']

__name__ = Adder

 2004 Ralph Noack 111

Python Modules
• Notice that our test statements were executed even

when the module was imported.
• Notice that the __name__ variable changed from

‘main’ to ‘Adder’
• We can test to see if the file is run as a script by

checking to see if the variable __name == ‘main’
• Use the condition to have test code skipped when

used as a module
if __name__ == "__main__":

#test code that is not executed when imported

 2004 Ralph Noack 112

Python Modules
• Copy Adder.py to AdderMod.py and add the test:
if __name__ == "__main__":

sum1=Adder([1,2,3,4,5])

print sum1

sum2=Adder(['a','b','c','d','e'])

print sum2

sum3=Adder("abcdefg")

print sum3

• Run as a script, then interactive python and import
>>> import AdderMod

>>> print AdderMod.Adder([1,2,3,4,5])

15

• Notice that now the test code is not executed on import

 2004 Ralph Noack 113

More on dir() function
• dir(objName) will return the names associated the

variable/object called objName
>>> dir()
['__builtins__', '__doc__', '__name__']
>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'EOFError',

'Ellipsis', 'EnvironmentError', 'Exception', 'FloatingPointError',
'IOError', 'ImportError', 'IndexError', 'KeyError',
'KeyboardInterrupt', 'LookupError', 'MemoryError', 'NameError',
'None', 'NotImplementedError', 'OSError', 'OverflowError',
'RuntimeError', 'StandardError', 'SyntaxError', 'SystemError',
'SystemExit', 'TypeError', 'ValueError', 'ZeroDivisionError', '_',
'__debug__', '__doc__', '__import__', '__name__', 'abs', 'apply', 'buffer',
'callable', 'chr', 'cmp', 'coerce', 'compile', 'complex', 'delattr', 'dir',
'divmod', 'eval', 'execfile', 'exit', 'filter', 'float', 'getattr', 'globals',
'hasattr', 'hash', 'hex', 'id', 'input', 'int', 'intern', 'isinstance', 'issubclass',
'len', 'list', 'locals', 'long', 'map', 'max', 'min', 'oct', 'open', 'ord', 'pow',
'quit', 'range', 'raw_input', 'reduce', 'reload', 'repr', 'round', 'setattr',
'slice', 'str', 'tuple', 'type', 'vars', 'xrange']

 2004 Ralph Noack 114

Python Modules
• Examine some of the names after importing
>>> import AdderMod

>>> dir() #list of names in main

['AdderMod', '__builtins__', '__doc__',
'__name__']

>>> print AdderMod

<module 'AdderMod' from 'AdderMod.pyc'>

>>> dir(AdderMod) #list of names in the module

['Adder', '__builtins__', '__doc__', '__file__',
'__name__']

>>> print AdderMod.Adder.__doc__ #docstring

This function will add up the elements in the
list and return the final value

 2004 Ralph Noack 115

Look at Namespace
• We have seen that with Python you do not declare variable

names/types ahead of time
• The variable/names spring into existence when they are

assigned a value
• We have seen that different portions of the code know

about different names.
– We have seen that the main, a module, and a function have different sets

of names: I.e. their own namespace
• This prevents confusion and unintended side effects where the name in

one place is the same in another place
– Consider two modules or functions that used the same name for a variable
– If these two names referenced the same variable then changing a value in

one place would also change it in the other place
• This ability to have different namespaces is also called scope

– The scope of a variable is where it is known and can be accessed

 2004 Ralph Noack 116

Look at Namespace
• The module (including the main or top level module) defines a global

namespace for the module
• Each CALL to a function defines a new local namespace

– Names assigned a value in a function are put in the local namespace/scope
• You can assign a value to a global variable by first declaring it to be

global:
global varName

• All other names are global or built-in
– Names that are not assigned a value in the function are assumed to be

globals (in the enclosing modules namespace) or built-in (names
predefined in python)

 2004 Ralph Noack 117

Look at Namespace
• When python looks for a variable name it follows the following three

rules:
– 1. Python searches for names in the three scopes/namespaces:

• Local, then Global, then Built-in
• Remember: LGB rule

– 2. By default name assignments create or change names in the local scope
– 3. The global declaration tells python to look for the name in the scope of

the enclosing module

 2004 Ralph Noack 118

Example of Namespace
#!/usr/bin/env python

ExamineScope.py

the global scope for the module

g=1

def examine(a):

now in the local scope for the function

assign a value, creates the name in the local scope

l=2

add the local variable l to the global variable g

store the result in the local variable m

m = l + g

examine the names in the local scope

print "local scope names",dir()

return m

call the function and put the return value in a global scope variable

r=examine(2)

print "The returned value is",r

print "global scope names",dir()

 2004 Ralph Noack 119

Run ExampleScope.py
./ExamineScope.py

local scope names ['a', 'l', 'm']

The returned value is 3

global scope names ['__builtins__', '__doc__',
'__name__', 'examine', 'g', 'r']

 2004 Ralph Noack 120

Example 2 of Namespace
#!/usr/bin/env python

ExamineScope2.py

the global scope for the module

g=1

e=0

def examine(a):

now in the local scope for the function

assign a value, creates the name in the local scope

l=2

add the local variable l to the global variable g

store the result in the local variable m

m = l + g

tell python that we want to use the global name

and not create another local variable

global e

e=m

examine the names in the local scope

print "local scope names",dir()

return m

call the function and put the return value in a global scope variable

r=examine(2)

print "The returned value is",r,"and the value of e is",e

print "global scope names",dir()

 2004 Ralph Noack 121

Run ExampleScope2.py
./ExamineScope2.py

local scope names ['a', 'l', 'm']

The returned value is 3 and the value of e is 3

global scope names ['__builtins__', '__doc__',
'__name__', 'e', 'examine', 'g', 'r']

 2004 Ralph Noack 122

Name Qualification
• Remember python uses the LGB rule to find a variable

with a given name
• You can specify where to find the name (name

qualification) by specifying the object containing it:
– myMod.aVar will search for aVar in the object myMod

• Will use LGB rules to find myMod

• This expands to a qualification path:
– myMod.AnObject.aVar will search for AnObject in the object

myMod and then search it for aVar

 2004 Ralph Noack 123

Standard Python Modules
• Python comes with a library of standard modules

– Described in The Python Library Reference at
http://www.python.org/doc/current/lib/lib.html

• You can install your own or other modules
– Set the environment variable PYTHONPATH to include the location

where the various modules are described
– sys.path is a variable in the sys module that contains the current path that

is searched to find a module
>>> import sys

>>> print sys.path

['', '/opt/dislin/python', '.',
'/opt/local/Python', '/opt/local/Python/PIL',
'/opt/local/lib/', '/usr/local/lib/',
'/usr/local/lib/vtk/python',
'/home/noack/local/Python',
'/home/noack/local/Python/lib/python/', '',
'/usr/lib/python1.5/']

 2004 Ralph Noack 124

sys Module
• The sys module provides other important capabilities
• sys.argv

– The list of command line arguments as strings
– sys.argv[0] is name of the executable or script

• sys.exit()
– Terminates python and returns to the command line

• sys.stdin
– Standard input file, usually the keyboard

• sys.stdout
– Standard output file, usually the terminal window/screen

• sys.stderr
– Standard error file, usually the terminal window/screen

 2004 Ralph Noack 125

string Module
• The string module provides many useful functions that

operate on strings
• We’ll examine only a few methods
• You must first import the module
>>> import string

• string.split(s) splits the string s wherever it finds white
space

>>> string.split("are we having fun")

['are', 'we', 'having', 'fun']

• string.split(s,sep) splits the string s wherever it finds the
separator string sep

>>> string.split("1,2,3,4,5",",") #split at comma

['1', '2', '3', '4', '5']

 2004 Ralph Noack 126

string Module
• string.join(wordlist) joins the list of words inserting a

single space between them
>>> string.join(["first","second","third"])

'first second third‘

• string.join(wordlist,sep) joins the list of words inserting
the sep string between them

>>> string.join(["first","second","third"],’-’)

'first-second-third'

 2004 Ralph Noack 127

string Module
• string.replace(s,old,new) returns a string that replaces the

occurrences of old by new in the string s
>>> string.replace("are we having fun","are

we","We ARE")

'We ARE having fun'

• string.lower(s) returns a lowercase version of s
• string.upper(s) returns an uppercase version of s
>>> string.lower("MiXeD CaSeS")

'mixed cases‘

>>> string.upper("MiXeD CaSeS")

'MIXED CASES'

• See also the re module for even more advanced string
operations

 2004 Ralph Noack 128

Input and Output using Files
• The print statement provides output via the standard output

file.
• Access to other files is provided via a file object
• Create a file object with the python function

open(filename,mode)
– filename is a string containing the name of the file
– mode is a string that specifies the processing mode:

• ‘r’ means open the file for reading input
• ‘w’ means open the file for writing output
• ‘a’ means open the file appending, writing output to then end of the

file
– The open function returns a file object that provides appropriate

methods: fileobject=open(name,mode)
– Close the file with the fileobject.close() method

 2004 Ralph Noack 129

Input using Files
• Reading a file

– First open the file and get a file object: f=open(name,’r’)
– Data = f.read() reads the WHOLE file and returns it as a string
– Data = f.read(n) reads the n bytes from the file and returns it as a

string
– f.read() returns an empty string when it encounters and end of file:
– Data = f.readline() read one line including the newline, ‘\n’, at the

end of the line
– Lines=f.readlines() returns a list containing all the lines of data in

the file, each line includes the newline
– Lines=f.readlines(sizehint) returns a list containing lines of data in

the file, but it will read sizehint number of bytes and enough more
to get a complete line. Useful for reading large files with a small
computer.

 2004 Ralph Noack 130

Input using Files
>>> f=open('Adder.py')

>>> data=f.read()

>>> f.read()

‘’

>>>f.close()

>>>print data

>>> f=open('Adder.py')

>>> line=f.readline()

>>> line

'#!/usr/bin/env python\012'

>>> print line

#!/usr/bin/env python

>>>

 2004 Ralph Noack 131

Input using Files
>>> f=open('Adder.py')

>>> lines=[] # create a list to hold the lines

>>> for i in range(3): # read only three lines

... # append each line to the list of lines

... lines.append(f.readline())

...

>>> print lines

['#!/usr/bin/env python\012', '\012',

'def Adder(list):\012']

 2004 Ralph Noack 132

Output using Files
• Open the file in write or append mode
• Write to a file using the write() method
• f.write(string) writes the contents of string to the file
>>># open the file for writing

...f=open("MyFirstFile.txt","w")

>>># write a string to the file

...# include newline at the end of the line

...f.write("I love Python!\n")

>>>f.close()

>>>

23: cat MyFirstFile.txt

I love Python!

 2004 Ralph Noack 133

Copy a File
>>> #open the input file

... fin=open("Adder.py","r")

>>> #read the whole file

... contents=fin.read()

>>> fin.close()

>>> #open the output file

... fout=open("Copy","w")

>>> #write the file

>>> fout.write(contents)

>>> fout.close()

 2004 Ralph Noack 134

Another useful module: urllib
• The urllib module provides the capability to fetch

data/pages from a web server
• urlopen(url) returns a file like object with many of the

same methods
– u.read(), u.readline(), u.readlines(),u.close()
– url should start with a scheme identifier http: or ftp:

• I.e. http://www.python.org
• If url does not start with ftp: or http: a local file is opened

import urllib

open a connection to the webserver for a specific URL

urlopen returns a file-like object

connection=urllib.urlopen("http://www.arl.hpc.mil")

read all the data returned by the web server

page=connection.read()# get a string with all the data

connection.close()

 2004 Ralph Noack 135

Example using urllib
• Create a script to get a web page and save the page as a

local file
– getpage.py

• Change the script to get use a url specified on the
command line along with the destination file
– copypageto.py “http://www.python.org” page.html
– Remember sys.argv is a list of the command line arguments
– Sys.argv[0] is the command name

 2004 Ralph Noack 136

getpage.py
#!/usr/bin/env python

#getpage.py

import urllib

open a connection to the webserver for a specific URL

urlopen returns a file-like object

connection=urllib.urlopen("http://www.arl.hpc.mil")

read all the data returned by the web server

page=connection.read()

connection.close()

#open an output file

out=open("webpage.html","w")

out.write(page)

out.close()

 2004 Ralph Noack 137

copypageto.py
#!/usr/bin/env python

#copypageto.py

import sys

import urllib

open a connection to the webserver for a specific URL

urlopen returns a file-like object

connection=urllib.urlopen(sys.argv[1])

read all the data returned by the web server

page=connection.read()

connection.close()

#open an output file

out=open(sys.argv[2] ,"w")

out.write(page)

out.close()

 2004 Ralph Noack 138

Exception Handling
• Exceptions are a high level program flow control method
• The typical use is for error handling: to catch unusual

conditions and do something appropriate
• The basic syntax is:
try:

<statements1>
except:

<statements2>
• The code block indicated by <statements1> are executed

and if an exception occurs the code in <statements2> is
executed

• The default exception handler will terminate the program
• There is additional capability not discussed here. Consult a

Python book/documentation on all the details

 2004 Ralph Noack 139

Example Exception Handling
>>> a=0

>>> b=1/a

Traceback (innermost last):

File "<stdin>", line 1, in ?

ZeroDivisionError: integer division or modulo

• Now use a try to catch the exception
>>> a=0

>>> try:

... b=1/a

... except:

... print "Division by",a,"failed"

...

Division by 0 failed

• The try/except construct let us handle the event gracefully
without terminating the program

 2004 Ralph Noack 140

Raising an Exception
• You can create an exception event with the raise statement

– raise <name> where <name> is a string, or other appropriate
object

– For example
>>> raise "my first error ever"

Traceback (innermost last):

File "<stdin>", line 1, in ?

my first error ever

>>> try:

... raise "my first error ever"

... except:

... print "caught it!"

...

caught it!

 2004 Ralph Noack 141

What is an Object?
• An entity or building block that has attributes and

behavior
• Attributes are the data that is specific to the object
• Behavior is what an object can do

– Called methods
– Define the interface to the object
– Invoking/calling the method of an object is called

sending it a message

 2004 Ralph Noack 142

What is a Class?
• The class specifies the template or design of the

object
– What are the attributes that an object of this type should

have?
– What are the methods that an object of this type should

have?

• Think of the class specification as a cookie cutter
• Used to create an object instance

– We instantiate (create an instance of) an object to get an
individual/distinct object

 2004 Ralph Noack 143

Object Oriented Programming Concepts
• Encapsulation

– Package of data and behavior/methods that act on the
data

• Polymorphism
– Different objects have the same interface/method name

• Inheritance
– Common definition of data and behavior is shared

• Composition
– An object is composed of a collection of other objects

 2004 Ralph Noack 144

Encapsulation
• Package of data and behavior/methods that act on

the data
• Data hiding

– Object methods are only way to interact with the data

• Interface should be fixed
– The implementation can be changed without affecting

the other objects

 2004 Ralph Noack 145

Polymorphism
• Literally means many shapes
• Different objects have the same interface/method

name
– Respond to the same message
– Act appropriate for the particular type of object

• For example:
– Have a Circle object, Square object

• Each object has a DrawMe() method that will draw the shape.
• Same method name/interface but the method for each object

does the appropriate thing.

 2004 Ralph Noack 146

Inheritance
• Common definition of data and behavior is shared
• IS-A relationship
• Subclass/derived class inherits data and behavior from a

Superclass/base/parent Class
• Promotes code reuse
• For example:

– Have a Shape class
– Circle and Square inherit from Shape class

• Refactoring
– Take an existing set of classes and find commonalities between

them that define a superclass
– Create/modify the superclass and change the code to reuse the new

code in the superclass.

 2004 Ralph Noack 147

Composition
• An object that is composed of a collection of other

objects
• HAS-A relationship
• For example

– Car Class
• Contains an Engine, 4 Wheels, a SteeringWheel, etc.

 2004 Ralph Noack 148

Python Objects
• Most everything within python is an object

– Built-in types like integer and list are not
• Cannot be used as a base class

• Access an objects attributes and methods with:
– Object.attribute
– Object.method()

• Already have seen examples of this:
– ComplexNumber.real()
– ComplexNumber.imag()
– dictionary.keys()

 2004 Ralph Noack 149

Python Classes
• The python class is specified by the class keyword, a name

for the class, optional parenthesized list of classes to
inherit from, a colon, and a block of code

• The simplest form of a class definition is
class ClassName:

<block of code>
• The block of code defines a template that specifies

– How an object of this type should look(What are its attributes)
– How it should behave(what are its methods)

• An instance of the class is created by calling the class
name without any arguments:
– anInstance=ClassName()

 2004 Ralph Noack 150

Simplest Python Class
• The simplest class definition is
class passClass:

pass
• The class does not define any default attributes or methods.
• You can use it as a structure to hold attributes and methods that you

define at run time
>>> class passClass: pass

...

>>> a=passClass()

>>> a.day='mon'

>>> a.date='08/11/2003'

>>> def afun(arg): print 'entered afun',arg

...

>>> afun(1)

entered afun 1

>>> a.fun=afun

>>> a.fun(2)

entered afun 2

 2004 Ralph Noack 151

Python Class Attributes
• Class attributes (variables that are shared by all instances)

are specified before any method definitions
• Reference them as object.attribute or className.attribute
>>> class myClass:

... a=1.0

... text="myClass is simple"

...

>>> anInstance=myClass()

>>> print anInstance

<__main__.myClass instance at 80d98c0>

>>> print anInstance.a

1.0

>>> print anInstance.text

myClass is simple

>>> print myClass.text

myClass is simple

 2004 Ralph Noack 152

Python Class Methods
• Class method definitions follow the class attributes
• Class methods again are specified by def keyword, method

name, list of arguments, a colon and followed by a block
of code

• Remember to properly indent
• The argument list must contain at least one variable

– The first argument will be the object instance that by convention is
called self

– You are not required to call it self as the name self has no special
meaning to Python

– If you do not follow the convention your code may be less
readable by other Python programmers

• The methods can change the values of class variables
– self.var=value

 2004 Ralph Noack 153

Calling Class Methods
• As we have seen in other examples you call the method

associated with an object with the syntax of:
object.method()

• Remember that the first argument of a class method is the
object instance

• You can call the class method in two ways:
– Unbound class method

• You specify the class (not an object instance) and the method
• You must explicitly pass the instance argument

– Bound instance methods
• You specify the object instance and the method
• Python packages the instance with the function in the instance class
• You do not pass the object instance, Python adds it for you

 2004 Ralph Noack 154

Calling Class Methods
• Unbound class method

anInstance=myClass() # create an instance
– Call the method by specifying the class and passing the instance as

the first argument.
myClass.myMethod(anInstance)

• Bound class method: instance and method are packaged by
python
– Object instance is implicitly added to the call as the first argument
anInstance=myClass() # create an instance
anInstance.myMethod() # the first argument will be anInstance

• The unbound method call lets us call any class method as
long as the object instance is appropriate

 2004 Ralph Noack 155

Python Class Attributes
• Variables that are unique to the instance of the object can

be created or changed:
– Within a method definition:

• self.var=value
– Outside the class definition by specifying the object instance:

• anInstance=myClass()
• anInstance.var=‘the value’

 2004 Ralph Noack 156

Python and Private Attributes
• Python object attributes are not private

– You can access them at any place where you have an object
instance

a=myClass()
a.var=value

– You should exercise care in not directly accessing object attributes
– OO approach is to access the attributes through methods

a=myClass()
a.setVar(value)
val=a.getVar()

• Python has limited support of private attributes via name
mangling
– Any name of the form __name (at least two leading underscores, at

most one trailing underscore) is now textually replaced with
_classname__name, where classname is the current class name
with leading underscore(s) stripped

 2004 Ralph Noack 157

Python and Private Attributes
#!/usr/bin/env python

class Private:

__p=1

def printP(self):

print self.__p

a=Private()

a.printP() # access via a method

print a._Private__p # can still access the
mangled name

print a.__p # cannot access the private var
directly

 2004 Ralph Noack 158

Python Class Attributes
#!/usr/bin/env python2

class myClass:

a=1.0

text="myClass is simple"

def myMethod(self):

self.b=2.0

print "You called myMethod and the
instance is",self

anInstance=myClass()

print anInstance

print anInstance.a

print anInstance.text

anInstance.myMethod()

anInstance.c=‘a new instance variable’

print anInstance.b,anInstance.c

 2004 Ralph Noack 159

Object Constructor
• It is often useful to have the object initialized with specific

attributes when it it created
– In many OO languages a routine called a constructor is called

when the object is created

• Python invokes a default constructor routine (that does not
initialize any instance variables) when the object is create

• You can override this default behavior by defining a class
method called __init__(self)

def __init__(self):
<block of code>

• You can also pass arguments to be used in setting instance
variables

 2004 Ralph Noack 160

Object Constructor
#!/usr/bin/env python2

myClassConstructor.py

class myClass:

def __init__(self,color,fill=None):

self.color=color

self.fill=fill

instance1=myClass('red')

instance2=myClass('blue','solid')

print instance1.color,instance1.fill

print instance2.color,instance2.fill

 2004 Ralph Noack 161

Class Inheritance
• Inheritance provides for code reuse

– Attributes and methods that are common between two different
classes can be placed into a base class and shared

• Another view is to start with a base class(superclass) and
create a derived class(subclass) that is a modification or
extension of the base class
– The base class can provide a template for derived classes

• In python the base classes are specified as a parenthesized
list of base classes to the class name:

class derivedClass(baseClass):
<block of code>

• For multiple inheritance you specify the set of base classes
class derivedClass(baseClass1, baseClass2, baseClass3):

<block of code>

 2004 Ralph Noack 162

Inheritance and Attribute Resolution
• Python will try to resolve attribute and method by

– Looking first in the derived class
– Looking in the base class

• If the base class is derived it will recursively search any of its base
classes

– For multiple inheritance cases it uses a depth first, left-to-right
search path

• Fully search the first base class
• If not found then fully search the second base class
• Etc.
• Example: class derivedClass(baseClass1, baseClass2, baseClass3):

– Search baseClass1 (including any classes it inherits from)
– If not found the search baseClass2, etc.

 2004 Ralph Noack 163

Derived Classes Extend Base Classes
• First consider the case where a derived class will extend

the base class
• The derived class adds new attributes and methods
• The base class attributes and methods are unchanged and

available

 2004 Ralph Noack 164

Inheritance Example
#!/usr/bin/env python2

class a:

a=1.0

def funA(self): print "You called funA",self

class b:

b=2.0

def funB(self): print "You called funB",self

class c(a):

c=3.0

def funC(self): print "You called funC",self

class d(b,c):

d=4.0

def funD(self): print "You called funD",self

Dinstance=d()

print Dinstance.a,Dinstance.b,Dinstance.c,Dinstance.d

Dinstance.funA()

Dinstance.funB()

Dinstance.funC()

Dinstance.funD()

 2004 Ralph Noack 165

Inheritance Tree
• Let’s examine the inheritance tree for the example

D
d,funD

C
c,funC

B
b,funB

A
a,funA

 2004 Ralph Noack 166

Override Inherited Methods
• A derived class can have attributes and/or methods that

have the same name as those in a base class
• This allows for the derived class to override the behavior

or attributes of the base class
– The derived class is very similar to the base class but needs

different behavior
– The derived class has a method with the same name as the base

class but does something different

• The derived class can still access the base class method by
using an unbound method call

 2004 Ralph Noack 167

Inheritance and Override Example
#!/usr/bin/env python2

class a:

a=1.0

def funA(self): print "You called a.funA",self

def funAA(self): print "You called a.funAA",self

class b(a):

a=2

b=3.0

def funB(self): print "You called b.funB",self

def funA(self): print "You called b.funA",self

Binstance=b()

print Binstance.a,Binstance.b

Binstance.funA()

Binstance.funB()

Binstance.funAA()

a.funA(Binstance) # unbound method call

 2004 Ralph Noack 168

Inheritance Tree
• Let’s examine the inheritance tree for the example

B
a,b,

funA,
funB

A
a,funA,
funAA

 2004 Ralph Noack 169

Overloading Operators
• Classes can implement special methods to allow objects to

respond to the usual operations: +, -, /, *, <, > , etc.
• Overloading in Python is achieved by providing specially

named class methods
– Already have overloaded the constructor __init__()
– All overload methods have names that start and end with two

underscores.

 2004 Ralph Noack 170

Common Methods for Numeric Objects
• The following methods can be defined to emulate numeric

objects.
– Methods corresponding to operations that are not supported by the

particular kind of number implemented should be left undefined.
__add__(self, other) x+y
__sub__(self, other) x-y
__mul__(self, other) x*y
__div__(self, other) x/y
__abs__(self) abs(x)
__neg__(self) -x
__pos__(self) +x

 2004 Ralph Noack 171

Methods for Objects of Different Types
• Special procedures are required when the two objects are

not of the same type
– Example: multiply a constant by a vector

• The following methods are called when the left object is
not of the same type as the right
– y+x, y-x, y*x, y/x and y does not implement the regular method
__radd__(self, other) y+x
__rsub__(self, other) y-x
__rmul__(self, other) y*x
__rdiv__(self, other) y/x

 2004 Ralph Noack 172

Overloading Operators: Example 1
• Class V partially implements a Vector class

– Stores x,y,z as attributes
– Methods for adding and multiplying (dot product) of two vectors

#!/usr/bin/env python2

class V:

def __init__(self,x=0,y=0,z=0):

self.x = x; self.y = y; self.z = z

def __add__(self,other):

new=V(self.x+other.x,self.y+other.y,self.z+other.z)

return new

def __mul__(self,other):

new=V(self.x*other.x,self.y*other.y,self.z*other.z)

return new

def __repr__(self):

return "(%f,%f,%f)"% (self.x,self.y,self.z)

v1=V(1.0,1.0,1.0)

v2=V(2.0,0.0,0.0)

print v1,"+",v2,"=",v1+v2

print v1,"*",v2,"=",v1*v2

print v1+2.0 # V + a float won’t work

 2004 Ralph Noack 173

Overloading Operators: Example 1
./override_operators.py

(1.000000,1.000000,1.000000) +
(2.000000,0.000000,0.000000) =
(3.000000,1.000000,1.000000)

(1.000000,1.000000,1.000000) *
(2.000000,0.000000,0.000000) =
(2.000000,0.000000,0.000000)

Traceback (most recent call last):

File "./override_operators.py", line 19, in ?

print v1+2.0

File "./override_operators.py", line 6, in __add__

new=V(self.x+other.x,self.y+other.y,self.z+other.z)

AttributeError: 'float' object has no attribute 'x'

 2004 Ralph Noack 174

Overloading Operators: Example 2, Page 1
• Change Class V Methods to also allow adding and multiplying of a

scalar and a vector
#!/usr/bin/env python2

class V:

def __init__(self,x=0,y=0,z=0):

self.x = x; self.y = y; self.z = z

def __add__(self,other):

new=V()

if isinstance(other,V):

new=V(self.x+other.x,self.y+other.y,

self.z+other.z)

else:

new=V(self.x+other ,self.y+other ,self.z+other)

return new

def __radd__(self,other):

new=V()

print "radd",other,"+",self

new=V(self.x+other ,self.y+other ,self.z+other)

return new

 2004 Ralph Noack 175

Overloading Operators: Example 2, Page 2
def __mul__(self,other):

new=V()

if isinstance(other,V):

new=V(self.x*other.x,self.y*other.y,

self.z*other.z)

else:

new=V(self.x*other ,self.y*other ,self.z*other)

return new

def __repr__(self):

return "(%f,%f,%f)"% (self.x,self.y,self.z)

v1=V(1.0,1.0,1.0)

v2=V(2.0,0.0,0.0)

print v1,"+",v2,"=",v1+v2

print v1,"*",v2,"=",v1*v2

print 2+v1 # will use __radd__()

print v1+10

print v1*4

 2004 Ralph Noack 176

Overloading Operators: Example 2
./override_operators2.py

(1.000000,1.000000,1.000000) +
(2.000000,0.000000,0.000000) =
(3.000000,1.000000,1.000000)

(1.000000,1.000000,1.000000) *
(2.000000,0.000000,0.000000) =
(2.000000,0.000000,0.000000)

radd 2 + (1.000000,1.000000,1.000000)

(3.000000,3.000000,3.000000)

(11.000000,11.000000,11.000000)

(4.000000,4.000000,4.000000)

 2004 Ralph Noack 177

Container Objects
• We can create a container object by implementing special

methods
– A container is either a list (integer key) or a dictionary (arbitrary

key)
– Allows us to access items in our object with obj[key] syntax rather

than obj.list[key]
– Python calls the following methods for the respective access

• __getitem__(self,key) for self[key]
• __setitem __(self,key,value) for self[key]= value
• __len __(self) for len(self)
• A complete implementation will require more methods

 2004 Ralph Noack 178

Container Objects: Example
#!/usr/bin/env python2

class ListContainer:

def __init__(self,n=0):

if n > 0:

self.list=[0]*n

else:

self.list=[]

def __getitem__(self,key):

return self.list[key]

def __setitem__(self,key,value):

self.list[key]=value

def append(self,value):

self.list.append(value)

c=ListContainer()

c.append(1); c.append(2)

print "c[0]=",c[0]

for item in c:

print item

c[1]=10

print "c[1]=",c[1]

 2004 Ralph Noack 179

Container Objects: Example
./container.py

c[0]= 1

1

2

c[1]= 10

 2004 Ralph Noack 180

Creating a GUI
• A graphical user interface (GUI) can simplify the

interaction with a user for many tasks
– There are many cases where it can make it more difficult to

perform a task

• People are very comfortable with the graphical interface
• There are many toolkits available that can be used to create

a GUI
• Using a toolkit that runs on multiple platforms preserves

your investment and does not lock you into a proprietary
platform

 2004 Ralph Noack 181

GUI Toolkits
• A partial list of toolkits that have support for Python

– Tkinter, included with Python, based upon TCL/TK
• http://www.tcl.tk/

– WXWINDOWS, a C++ library, wxPython
• http:// www.wxwindows.org
• http:// www.wxpython.org

– Fox , a C++ library, FXPy
• http://www.fox-toolkit.org
• http://fxpy.sourceforge.net

– Qt , a C++ library, PyQt (not free for Windows)

• We will look at Tkinter because:
– It is included with Python (eliminates having to install another

package)
– It is fairly simple to use

 2004 Ralph Noack 182

General Comments on GUI Programming
• A GUI is intended to provide a lot of flexibility in its

interaction with the user
– Can push this button, or that one, move a slider, or a scrollbar, etc.

• The interaction can come from many different GUI
components and in any sequence

• This requires an asynchronous/event driven approach
• The programmer specifies:

– What components are used, where they are placed, etc.
– What should happen when an event occurs, ie. When button A is

pressed call function ButtonPressed()

• The toolkit is responsible for drawing the GUI and
handling the even loop.
– The control of the execution is passed to the toolkit

 2004 Ralph Noack 183

First GUI
• Import the Tkinter module
• Create a root window to hold everything
• Pass control to the toolkit
>>> import Tkinter

>>> root=Tkinter.Tk()

>>> root.mainloop()

 2004 Ralph Noack 184

Tkinter Widgets
• Tkinter provides a number of widgets to create a GUI

– Button
– RadioButton
– CheckButton
– MenuButton
– Text
– Entry
– Label
– ListBox
– Menu
– ScrollBar
– Message
– MenuButton
– Scale

 2004 Ralph Noack 185

Tkinter Widgets

 2004 Ralph Noack 186

Tkinter Organizational Widgets
• Tkinter provides a number of widgets to control the GUI

layout
– Root or TopLevel

• Creates a new window
– Frame

• A container for other widgets
– Layout managers

• Grid
– Specify the location as row,column

• Pack
– Specify the side of the available space where the widget should

be placed
– Like packing a suitcase

• Place
– Specify the location in window coordinates or as a fraction of the

space available

 2004 Ralph Noack 187

Tkinter Widgets: Parent/Child Relationship
• A tree structure is used to organize the widget relationships
• Each widget will be created as a child of a specified parent widget
• The root widget does not have a parent

– This is the top of the tree
– Created with:

• root=Tk()
• The Toplevel widget creates a new window that is a child of the root

window
>>> from Tkinter import *

>>>

>>> root=Tk()

>>> root.title('Root Window')

''

>>> newtop=Toplevel(root)

>>> newtop.title('New TopLevel Window')

''

>>> root.mainloop()

 2004 Ralph Noack 188

Tkinter Widgets: Label
• Label class creates a widget that will display text or images

– Text can be multiple lines
– Must specify the parent widget
– Wlabel=Label(root,text=‘This is the label string’)
#!/usr/bin/env python2

from Tkinter import *

root=Tk()

wlabel=Label(root,text="Hello there")

wlabel.grid(row=0)

root.mainloop()

 2004 Ralph Noack 189

Tkinter Widgets: Entry
• Entry class creates a one-line text box where the text string can be

edited:
– Must specify the parent widget
– Wentry=Entry(root)

• Wentry.get() method returns the text as a string
• Wentry.insert(index,string) inserts the contents of string before the

character specified by index
#!/usr/bin/env python2

from Tkinter import *

root=Tk()

wentry=Entry(root)

wentry.grid(row=0)

wentry.insert(0,"Hello there")

contents=wentry.get()

print "The entry widget contained:", contents

root.mainloop()

 2004 Ralph Noack 190

Tkinter Widgets: Button
• Button class creates a button widget that displays a text string, a

bitmap, or image
– Must specify the parent widget
– Wbutton=Button(root)

• It can be displayed in three different ways:
– Raised, sunken, or flat

• It will call a callback routine when invoked (press left mouse button
with cursor over the button

#!/usr/bin/env python2

from Tkinter import *

root=Tk()

wbutton=Button(root,text="Push Me")

wbutton.grid(row=0)

root.mainloop()

 2004 Ralph Noack 191

Tkinter Widgets: Button Callback
• A function can be specified to be invoked or called when

the button is pressed
– Wbutton=Button(root,text=‘Push me’,command=functionName)

#!/usr/bin/env python2

from Tkinter import *

def buttonCallback():

print ‘You pushed me!’

root=Tk()

wbutton=Button(root,text="Push Me",
command=buttonCallback)

wbutton.grid(row=0)

root.mainloop

 2004 Ralph Noack 192

Tkinter Widgets: Button Callback
• Notice that the callback function did not have any

arguments
• You can access/change global variables
#!/usr/bin/env python2

from Tkinter import *

count=0

def buttonCallback():

global count

count=count+1

print 'You pushed me',count,'times!'

root=Tk()

wbutton=Button(root,text="Push Me",
command=buttonCallback)

wbutton.grid(row=0)

root.mainloop()

 2004 Ralph Noack 193

Tkinter Widgets: Button Callback
• Notice that the callback function did not have any

arguments
• You can access/change global variables
#!/usr/bin/env python2

from Tkinter import *

count=0

def buttonCallback():

global count

count=count+1

print 'You pushed me',count,'times!'

root=Tk()

wbutton=Button(root,text="Push Me",
command=buttonCallback)

wbutton.grid(row=0)

root.mainloop()

 2004 Ralph Noack 194

Button Callback: OO approach
• Remember that Python packages an instance and its method when the

method is called
• This allows us access to an instance variable
• Callback will have an argument that is the instance variable: self
#!/usr/bin/env python2

from Tkinter import *

class MyApp:

def __init__(self,root):

self.wbutton=Button(root,text="Push Me",
command=self.buttonCallback)

self.wbutton.grid(row=0)

self.count=0

def buttonCallback(self):

self.count=self.count+1

print "You pushed me",self.count,"times!",self

root=Tk()

app=MyApp(root)

root.mainloop()

 2004 Ralph Noack 195

Button Callback Using Inheritance
• Now lets create a class that is derived from the Button

class
• We’ll add more than one button

– Each button will be a separate instance and hence have private
attributes

 2004 Ralph Noack 196

Button Callback Using Inheritance
#!/usr/bin/env python2

from Tkinter import *

class MyButton(Button):

def __init__(self,root,text="change me", maxtimes=10):

we have to explicitly call the contructor for the
base class

self.wbutton=Button.__init__(self,root,text=text,
command=self.buttonCallback)

self.text=text; self.count=0

self.maxtimes=maxtimes

def buttonCallback(self):

self.count=self.count+1

if self.count > self.maxtimes: print "Ouch!"

else:

print "You pushed",
self.text,self.count,"times!",self

root=Tk()

button1=MyButton(root,text="Button1"); button1.grid(row=0)

button2=MyButton(root,text="Button2",maxtimes=5)

button2.grid(row=1)

root.mainloop()

 2004 Ralph Noack 197

Connecting Button with Entry
• A complete GUI will have interaction between the different

components
• We’ll demonstrate this with a Button that retrieves the contents of an

Entry widget
• Design decisions:

– MyButton class will inherits from Button
– Each button will have separate instance of the MyButton object
– Each button will have an attribute that is the associated Entry widget
– Pressing the button will get the text from the associated Entry widget

 2004 Ralph Noack 198

Connecting Button with Entry Button: Page1
#!/usr/bin/env python2

from Tkinter import *

class MyButton(Button):

def __init__(self,root,text="change me"):

we have to explicitly call the contructor for
the base class

self.wbutton=Button.__init__(self,root,text=text,

command=self.buttonCallback)

self.text=text

self.wentry=None

def buttonCallback(self):

contents=self.wentry.get()

print "The entry widget for button",self.text,"
contained:", contents

 2004 Ralph Noack 199

Connecting Button with Entry Button: Page2
root=Tk()

button1=MyButton(root,text="Button1")

button2=MyButton(root,text="Button2")

save the entry widget as an instance variable

button1.wentry=Entry(root)

button2.wentry=Entry(root)

place each widget

button1.grid(row=0); button1.wentry.grid(row=0,col=1)

button2.grid(row=1); button2.wentry.grid(row=1,col=1)

root.mainloop()

 2004 Ralph Noack 200

re Module for Advanced String Handling
• String module can search based upon a fixed string
• Regular expressions are search strings that form vast

number of possible search strings
– Describe search strings composed of patterns of characters
– Probably familiar with wild card/characters from Unix: * ?

• Regular expressions are strings that contain regular text
and special character sequences.

• The special characters provide the power to generalize the
search to many possible search strings

• See also
– “Mastering Regular Expressions” by Jeffrey Fiedl, ISBN

0596002890, O’Reilly and Associates
– http://www.python.org/doc/current/lib/module-re.html
– http://www.amk.ca/python/howto/regex/

• import re to make the module available

 2004 Ralph Noack 201

re Module Functions
• Re module contains main functions for working with

strings/text: searching, substitution, splitting, etc.
• The re.search() and re.match() methods return a

MatchObject that have methods of their own
• The re.compile() method compiles the regular expression

and returns a RegexObject with a set of methods
– Speed up repeated use by compiling the regular expression

 2004 Ralph Noack 202

re Module Functions
• search(pattern,string)

– Searches string for the first match of pattern
– Returns MatchObject if match is found, None if not

• search(pattern,string,flags)
– Same but flags is a bitwise or of flags that control the behavior

• For example flags=re.I changes to non-case-sensitive matching

• match(pattern,string,flags) is similar but checks for zero or
more occurrences at the beginning of the string

>>> print re.search("a","A")

None

>>> print re.search("a","a")

<re.MatchObject instance at 80f1a90>

>>> print re.search("a","A",re.I)

<re.MatchObject instance at 80e7b70>

 2004 Ralph Noack 203

Regular Expression Special Characters
• “text” will match the literal string “text”

– re.search(“Hello”,line)

• Wild Character
– “.” matches any character except newline

• re.search(“He..o”,line) will match “Hello”, “HeLLo”, “HeAAo”, etc.

• Position Anchors
– “^” matches the start of a string

• re.search(“^Hello”,line) will match “Hello” but not “no Hello”
– “$” matches the end of a string

• re.search(“Hello$”,line) will match “Hello” but not “Hello there”

 2004 Ralph Noack 204

Regular Expression Special Characters
• Repeat Count

– “*” matches zero or more repetitions of the preceding expression and
matches as many repetitions as possible (Greedy match).

• re.search(“Hel*o”,line) matches “Heo”, “Helo”, “Helllllllo”
– “+” matches one or more repetitions of the preceding expression and

matches as many repetitions as possible (Greedy match).
• re.search(“Hel+o”,line) matches “Helo”, “Hello”, “Helllllllo”

– “?” matches zero or one repetitions of the preceding expression
• re.search(“Hel?o”,line) matches “Helo”, “Hello”, “Helllllllo”

>>> import re

>>> print re.search("Hel*o","Helllllo")

<re.MatchObject instance at 80edf88>

>>> print re.search("Hel?o","Helllllo")

None

>>> print re.search("Hel?o","Heo")

<re.MatchObject instance at 80e7af8>

>>> print re.search("Hel+o","Heo")

None

 2004 Ralph Noack 205

Regular Expression Special Characters
• Repeat Count: Non-Greedy

– To make matches non-greedy (match as few repetitions as possible) add a
“?” to the repeat character

– “*?” matches zero or more repetitions of the preceding expression
• re.search(“Hel*?o”,line) matches “Heo”, “Helo”, “Helllllllo”

– “+” matches one or more repetitions of the preceding expression
• re.search(“Hel+o”,line) matches “Helo”, “Hello”, “Helllllllo”

– “?” matches zero or one repetitions of the preceding expression
• re.search(“Hel?o”,line) matches “Helo”, “Hello”, “Helllllllo”

>>> import re

>>> print re.search("Hel*o","Helllllo")

<re.MatchObject instance at 80edf88>

>>> print re.search("Hel?o","Helllllo")

None

>>> print re.search("Hel?o","Heo")

<re.MatchObject instance at 80e7af8>

>>> print re.search("Hel+o","Heo")

None

 2004 Ralph Noack 206

Regular Expression Characters Sets
• A set of characters that should be matched are specified

inside []
– [abcd] will match any one of the characters in the set

• [0-9] is the set of numeric digits
• [a-zA-Z] is the set of lower and upper case non-numeric characters

– Prefix the set by “^” to match the characters not in the set
• [^0-9] will match anything that is not a numeric digit

>>> import re

>>> print re.search("[0-9]","a0b")

<re.MatchObject instance at 80e96c0>

>>> print re.search("[0-9]","ab")

None

>>> print re.search("[^0-9]","ab")

<re.MatchObject instance at 80d9290>

 2004 Ralph Noack 207

Regular Expression as Raw Strings
• The regular expression strings will frequently have

embedded special characters and the backslash “\”
• A raw string hides the special meaning of the special

characters from the python interpreter and passes the string
to the re module for processing

• Denote a raw string by prefixing the string with r
– For example:

• r”a raw string”
• r”\w.”

 2004 Ralph Noack 208

Regular Expression Groups
• The substring matched by a regular expression can be saved,

numbered/named, and used later
– Enclose the regular expression in parentheses (), reuse the substring with

\number where number is from 1-99
– ([0-9.]*)
– Name the group with (?P<name>pattern), reuse the substring with

(?P=name)
>>> a=re.search(r"([0-9.]*)","1234 ab 1.3")

>>> print a.groups()

('1234',)

>>> print a.group()

1234

>>> a=re.search(r"(?P<digits>[0-9.]+)","1234 ab 1235")

>>> print a.groups()

('1234',)

>>> print a.group("digits")

1234

 2004 Ralph Noack 209

Reusing Regular Expression Groups
>>> a=re.search(r"(?P<digits>[0-9.]+).*(?P=digits)",

"1234 ab 1235")

• Have a raw string pattern with a group named “digits”
– Pattern is “[0-9]+” to match one or more digits.

• Whole pattern will look for a set of digits, zero or more of
any character, followed by the same set of digits

• The digits substring that matched is:
>>> a.group("digits")

'123'

• The whole substring that matched is:
>>> a.group()

'1234 ab 123‘

 2004 Ralph Noack 210

Other re Module Functions
• split(pattern,string [,maxsplit=0])

– Splits string at the occurrences of the pattern
– Returns the list of substrings.
– Optional argument maxsplit limits the number of splits

>>> print re.split(r"[0-9]","a0b1c2d3e")

['a', 'b', 'c', 'd', 'e']

• findall(pattern,string)
– Returns a list of all non-overlapping matches of the pattern
– Include empty matches

>>> re.findall(r"([0-9.]*)","1234 ab 1.3")

['1234', '', '', '', '', '1.3', '']

 2004 Ralph Noack 211

Other re Module Functions
• sub(pattern,replacement,string [,maxnumber=0])

– Replaces the leftmost non-overlapping occurrences of pattern in
string

– Returns the new string.
– Optional argument maxnumber limits the number of substitutions
– Replacement can be a function

• Argument is a MatchObject and should return the replacement string
>>> re.sub(r"([0-9.]+)","<DELETED>","1234 ab 1.3")

'<DELETED> ab <DELETED>‘

• subn(pattern,replacement,string [,maxnumber=0])
– Identical to sub() but returns a tuple containing the new string and

the number of occurrences
>>> re.subn(r"([0-9.]+)","<DELETED>","1234 ab 1.3")

('<DELETED> ab <DELETED>', 2)

 2004 Ralph Noack 212

Using Compiled Regular Expressions
• Compiling a regular expression can speed up repeated use
• reo=re.compile(pattern [,flags])

– A RegexObject is returned
– RegexObject has many methods and attributes available
– Do not pass the pattern to the method calls

• reo.split(string [,maxsplit])
– Do not specify the pattern as an argument
– Behavior is identical to the split() function

• reo.findall(string)
– Identical to the findall() function

• reo.sub(repl,string [,maxnumber=0])
– Identical to the sub() function

• reo.subn(repl,string [,maxnumber=0])
– Identical to the subn() function

 2004 Ralph Noack 213

Using Compiled Regular Expressions
>>> reo=re.compile("([0-9.]+)")

>>> print reo

<re.RegexObject instance at 80eb720>

>>> reo.subn(r"<DELETED>","1234 ab 1.3")

('<DELETED> ab <DELETED>', 2)

>>> reo.search(r"1234 ab 1.3")

<re.MatchObject instance at 80d7c38>

 2004 Ralph Noack 214

Parallel Programming with Threads
• There are two common parallel programming paradigms

– Parallel threads of execution on shared memory machines
• Cannot have threads across nodes in a distributed memory cluster

– Message passing for distributed (and/or shared) memory machines
• pyMPI is an interface to MPI for Python

– http://sourceforge.net/projects/pympi
– Good way to learn/experiment with MPI
– Can build large scale parallel computations with Python as the

driver/executive

• This section will focus on programming with threads

 2004 Ralph Noack 215

Why use Parallel Threads?
• The use of parallel execution to speed up a computation is

common for HPC users
• More common need is to maintain responsiveness of one

part of the program while another is busy.
– Allow the user to interact with the GUI while some time

consuming task takes place
• Time consuming computation is run in a separate thread

– Wait for/read input while other tasks/GUI are active
• Separate reader thread(s) waits for/processes input

– A thread is assigned to each input stream
– Maintain response time for each reader

– GUI runs in main thread, other tasks are run in separate threads

 2004 Ralph Noack 216

All Threads Share Access to Process Memory
• Don’t have to pass messages to transfer memory
• Each thread can read/write to the same memory location

– Can cause problems if two threads read/write to same location at
the same time

• Both threads read same value, modify it, write it back: Value will be
from the last one to write

– User must lock access to memory that may have conflicts

• All GUI execution must be done in the main thread
– Other threads cannot make call to GUI components
– If GUI interactions are required (for example: new data to be

displayed) must inform the main thread

 2004 Ralph Noack 217

Threads and the Python Interpreter
• Remember Python is an interpreted language

– Compiled to bytecodes that are interpreted

• Python schedules and switches between threads
– Uses a global lock that allows only as single thread of execution at

a time
– Switching can only occur between execution of individual byte

codes

• Care must be exercised if using an extension module
written in another language
– Long running calculation in another programming language may

limit effectiveness
• Will block execution of all other threads unless specifically written to

interact with the threaded Python interpreter

• Must be careful with main thread exit
– Other threads may be killed immediately

 2004 Ralph Noack 218

Python Has Two Thread Modules
• The thread module provides low-level functions for

working with threads
– Very simple interface/few methods
– Similar interface as Unix pthreads library

• The threading module provides higher-level, object
oriented support for working with threads
– Built on top of the thread module
– Has some other useful functions

• Choice depends upon your programming style

 2004 Ralph Noack 219

What is executed in a Thread?
• In both modules the thread executes a worker function that

the user supplies
• A tuple of arguments and an optional dictionary of

keyword arguments are passed to the worker function
– Function and arguments are passed to call to start the thread
– The two thread modules call your worker function with the

supplied arguments

 2004 Ralph Noack 220

Thread Module
• import thread to make module available
• Call thread.start_new_thread(worker,args [,kwargs]) to

start a thread that will execute the function worker
– args is a tuple of arguments to be passed to the worker function
– kwargs is an optional dictionary with keyword arguments to be

passed to the function

• Call thread.get_ident() to get an integer thread identifier
of the current thread

def worker(arg1,arg2,arg3):

pass

thread.start_new_thread(worker,(1,2,3))

 2004 Ralph Noack 221

Thread Example 1
#!/usr/bin/env python2

#threads-1.py

import thread,time

def worker(arg1,arg2=None,arg3="a"):

id=thread.get_ident()

print "I am thread",id

print id,arg1,arg2,arg3

time.sleep(1)

nthreads = 4

for t in range(nthreads):

thread.start_new_thread(worker,(t,-1,3))

thread.start_new_thread(worker,(t,"Using default arg"))

#give the threads time to run before exiting

time.sleep(10)

 2004 Ralph Noack 222

Thread Example 2
#!/usr/bin/env python2

#threads-2.py

import thread,time

def worker(arg1,arg2,arg3,**kwargs):

id=thread.get_ident()

print "I am thread",id

print id,arg1,arg2,arg3

time.sleep(1)

for key in kwargs.keys():

print id,arg1,key,kwargs[key]

nthreads = 4

for t in range(nthreads):

thread.start_new_thread(worker,(t,2,3),

{"a":10,"b":20,"c":30})

time.sleep(10)

 2004 Ralph Noack 223

Thread Locking
• A big advantage of threaded programs is that the memory

space is shared
• Attempts to update shared data can cause a race condition

where the results are inconsistent
• Must provide mutually exclusive access to the shared data

to make program consistent and deterministic
• Thread must acquire a mutex lock associated with the data

– First allocate the mutex lock object
• Lock=thread.allocate_lock()
• Lock=threading.Lock()

– Acquire the lock
• Lock.acquire()

• Lock must be released when finished
– Failure to release will cause a deadlock where other threads are

waiting for the lock
• Lock.release()

 2004 Ralph Noack 224

Minimize Time Holding a Lock
• Want to minimize the time spent holding a lock

– Other threads may be waiting for lock
• Can have multiple mutex lock objects to provide finer granularity of

locking
– Allocate a mutex lock object for each section of critical code/variable

Lock_A=threading.Lock()

Lock_B=threading.Lock()

Lock_A.acquire()

#change variable A

#save value for my computations

Lock_A.release()

#other code

Lock_B.acquire()

#change variable B

#save value for my computations

Lock_B.release()

 2004 Ralph Noack 225

Example: Threads and Race Condition; pg 1
#!/usr/bin/env python2

#race-1.py

import thread,time,random

global counter variable that each thread will update

counter=0

def worker(sleep_time,increment):

global counter

save the current value

oldvalue=counter

sleep to simulate doing something

time.sleep(sleep_time)

now update the global variable

counter=oldvalue + increment

id=thread.get_ident()

output values for the thread

print "I am thread",id,counter, \
"oldvalue=",oldvalue,sleep_time

 2004 Ralph Noack 226

Example: Threads and Race Condition; pg 2
nthreads = 4

for t in range(nthreads):

sleep_time=random.randrange(0,4)

thread.start_new_thread(worker,(sleep_time,t+1))

#give the threads time to run before exiting

time.sleep(10)

print "final value is",counter

 2004 Ralph Noack 227

Example: Threads and Race Condition; pg 1a
#!/usr/bin/env python2

#race-1a.py

import time,random

from threading import *

global counter variable that each thread will update

counter=0

def worker(sleep_time,increment):

global counter

save the current value

oldvalue=counter

sleep to simulate doing something

time.sleep(sleep_time)

now update the global variable

counter=oldvalue + increment

id=currentThread()

output values for the thread

print "I am thread",id,counter,"oldvalue=",oldvalue,
sleep_time

 2004 Ralph Noack 228

Example: Threads and Race Condition; pg 2a
nthreads = 4

threads=[0]*nthreads

create the thread objects

for t in range(nthreads):

sleep_time=random.randrange(1,4)

threads[t]=Thread(target=worker,args=(sleep_time,t+1))

#start them running

for t in range(nthreads): threads[t].start()

#wait for each thread to finish

for t in range(nthreads):

print "Joining", threads[t]; threads[t].join()

print "final value is",counter

 2004 Ralph Noack 229

Example: Threads and Race Condition; pg 2a
$./race-1a.py

Joining <Thread(Thread-1, started)>

I am thread <Thread(Thread-2, started)> 2 oldvalue= 0 1

I am thread <Thread(Thread-3, started)> 3 oldvalue= 0 1

I am thread <Thread(Thread-1, started)> 1 oldvalue= 0 2

Joining <Thread(Thread-2, stopped)>

Joining <Thread(Thread-3, stopped)>

Joining <Thread(Thread-4, started)>

I am thread <Thread(Thread-4, started)> 4 oldvalue= 0 2

final value is 4

$./race-1a.py

Joining <Thread(Thread-1, started)>

I am thread <Thread(Thread-3, started)> 3 oldvalue= 0 1

I am thread <Thread(Thread-4, started)> 4 oldvalue= 0 1

I am thread <Thread(Thread-1, started)> 1 oldvalue= 0 3

Joining <Thread(Thread-2, started)>

I am thread <Thread(Thread-2, started)> 2 oldvalue= 0 3

Joining <Thread(Thread-3, stopped)>

Joining <Thread(Thread-4, stopped)>

final value is 2

 2004 Ralph Noack 230

Example: Using Mutex Locks; pg 1a
#!/usr/bin/env python2

#race+lock-1a.py

import time,random

from threading import *

#global variable and a lock

counter=0

counter_lock=Lock()

def worker(sleep_time,increment):

global counter,counter_lock

#acquire the lock before we get the data

counter_lock.acquire()

oldvalue=counter

time.sleep(sleep_time)

counter=oldvalue + increment

#release the lock now that we are done

counter_lock.release()

id=currentThread()

print "I am thread",id,counter,"oldvalue=",oldvalue,
sleep_time

 2004 Ralph Noack 231

Example: Using Mutex Locks; pg 2a
nthreads = 4

threads=[0]*nthreads

create the thread objects

for t in range(nthreads):

sleep_time=random.randrange(1,4)

threads[t]=Thread(target=worker,

args=(sleep_time,t+1))

#start them running

for t in range(nthreads): threads[t].start()

#wait for each thread to finish

for t in range(nthreads): print "Joining", threads[t];
threads[t].join()

print "final value is",counter

 2004 Ralph Noack 232

Example: Using Mutex Locks; pg 2a
$./race+lock-1a.py

Joining <Thread(Thread-1, started)>

I am thread <Thread(Thread-1, started)> 1 oldvalue= 0 3

Joining <Thread(Thread-2, started)>

I am thread <Thread(Thread-2, started)> 3 oldvalue= 1 2

Joining <Thread(Thread-3, started)>

I am thread <Thread(Thread-3, started)> 6 oldvalue= 3 1

Joining <Thread(Thread-4, started)>

I am thread <Thread(Thread-4, started)> 10 oldvalue= 6 2

final value is 10

 2004 Ralph Noack 233

Subclassing From Thread
• The treading module provides an object oriented interface

to the thread control
• You can subclass from the Thread class to maintain the

OO style
• Can only override the constructor, __init__(), and run()

functions
– Must call the base class constructor if overriding the constructor

• Advantages
– We can create a custom constructor with the arguments that are

more understandable than a tuple
– Can subclass from other classes to have access to other methods

 2004 Ralph Noack 234

Subclassing From Thread: Example 2; pg 1
#!/usr/bin/env python2

threads-1b.py

import time,random

from threading import *

global variable and a lock

counter=0

counter_lock=Lock()

 2004 Ralph Noack 235

Subclassing From Thread: Example 2; pg 2
class myThread(Thread):

def __init__(self,id,increment,sleep_time):

self.id = id

self.increment = increment

self.sleep_time = sleep_time

must call base class constructor

Thread.__init__(self)

def run(self):

global counter,counter_lock

acquire the lock before we get the data

counter_lock.acquire()

oldvalue=counter

time.sleep(self.sleep_time)

counter=oldvalue + self.increment

release the lock now that we are done

counter_lock.release()

id=currentThread()

print "I am thread",id,counter,"oldvalue=",oldvalue,
self.sleep_time

 2004 Ralph Noack 236

Subclassing From Thread: Example 2; pg 3
nthreads = 4

threads=[0]*nthreads

create the thread objects

for t in range(nthreads):

sleep_time=random.randrange(1,4)

threads[t]=myThread(t,t+1,sleep_time)

#start them running

for t in range(nthreads): threads[t].start()

#wait for each thread to finish

for t in range(nthreads): threads[t].join()

print "final value is",counter

 2004 Ralph Noack 237

Example: GUI and Threads
• Next example will utilize threads to perform work for a

Tkinter GUI.
• Main thread will perform all GUI calls
• Worker threads do not interact with the GUI
• Will use mutex locks to coordinate access to critical data
• Program design:

– GUI will consist of an entry field and a button
– User enters a comma separated list of stock symbols
– A separate thread is spawned to get a quote for each one.
– When the data is available a popup window will display the data

along with a dismiss button
• Use the Tkinter after function to check for completed quotes as a

background work process
– Use Python classes to package data with methods instead of using

global variables

 2004 Ralph Noack 238

Mixin Class for Background Timer
• We will create a Background Timer class that uses the Tkinter after()

function to execute a function in the background
– Mixin Class: a class that is designed to add functionality/methods to

another class through inheritence. Not usually instantiated by itself
class BGtimer:

def StartTimer(self,msecs,WorkProc):

self._msecs = msecs

self.WorkProc=WorkProc

submit it to the event queue for the first time

self._submit()

def StopTimer(self):

self.root.after_cancel(self.timer_id)

self.WorkProc = None

self._msecs = 0

self.timer_id=None

def _submit(self):

self.timer_id=self.root.after(self._msecs,self._run)

def _run(self):

if self.WorkProc:

self.WorkProc()

resubmit the after event so that it continues

self._submit()

 2004 Ralph Noack 239

Use a Python Class to Package the Data
#!/usr/bin/env python

getquotes+threads.py
import sys

import string

import urllib

from Tkinter import *

from threading import *

from BGtimer import *

class GetQuoteApp(BGtimer):

def __init__(self,root):

self.root = root

self.threads={}

self.quotes={}

self.quotes_lock=Lock()

Create GUI Widgets

self.wsymbol = Entry(self.root)

wquote_button = Button(self.root,text="Quote")

wquote_button.bind("<Button-1>",self.GetDetailsCB)

self.wsymbol.grid(row=0)

wquote_button.grid(row=1)

 2004 Ralph Noack 240

Button Callback Starts Threads
def GetDetailsCB(self,arg):

stocklist=self.wsymbol.get()

list=string.split(stocklist,",")

if not list:

empty entry field. Nothing to do

return

get the lock because we're adding to the self.threads array

self.quotes_lock.acquire()

create the thread objects and start them running

for sym in list:

skip the thread if we already started it

if self.threads.has_key(sym) and self.threads[sym].isAlive():

continue

thread=Thread(target=self.GetQuote,args=(sym,))

save it so we can see if it is alive

self.threads[sym]=thread

start them running

thread.start()

release the lock

self.quotes_lock.release()

start our background timer to process the results from the threads

self.StartTimer(100,self.CreateQuotePopup_from_list)

 2004 Ralph Noack 241

Thread Work Function to Get Quote
def GetQuote(self,sym):

print "Getting Quote for",sym

baseurl = "http://quote.yahoo.com/d?f=snl1d1t1c1p2va2bapomwerr1dyj1x&s=";

url = baseurl + sym

try:

f=urllib.urlopen(url)

data = f.readlines()

f.close()

except:

return

fields=string.split(data[0],",")

self.quotes_lock.acquire()

self.quotes[sym]=fields

self.quotes_lock.release()

 2004 Ralph Noack 242

Thread Work Function to Get Quote
def CreateQuotePopup_from_list(self):

"""Create a popup with the data for each stock that is in the list"""

get the lock and see if we have any data

self.quotes_lock.acquire()

if self.quotes:

have data. get it and remove it from the list

quotes_lcl={}

for key in self.quotes.keys():

quotes_lcl[key]=self.quotes[key]

remove the quote and thread from the main list

del(self.quotes[key])

del(self.threads[key])

now create a popup for each quote

for key in quotes_lcl.keys():

self.CreateQuotePopup(key,quotes_lcl[key])

release the lock

self.quotes_lock.release()

if self.quotes:

resubmit ourself if there are more quotes

self.StartTimer(100,self.CreateQuotePopup_from_list)

elif not self.threads:

no more quotes/threads so stop the workproc

self.StopTimer()

 2004 Ralph Noack 243

Function to Create Popup to Display Quote
def CreateQuotePopup(self,sym,fields):

if we failed to get the quote, do nothing

if not fields:

print "Could not get a quote for",sym

return

print "Creating Popup for",sym,fields

new toplevel window

root=Toplevel()

root.title("Details for %s" % sym)

tw = Text(root,height =20, width = 39)

tw.pack();

text = ("Symbol", "Name", "Price", "Date", "Time", "Change",

"Percent. Change", "Volume", "Average Volume",

"Bid", "Ask", "Previous", "Open", "Day Range",

"52 week range", "Earnings/Share", "Price/Earnings", "Dividend",

"Dividend Yield", "Market Capital");

for i in range(len(text)):

line = "%-16s %s\n" % (text[i], fields[i])

tw.insert('end', line)

b=Button(root,text = 'Dismiss', command=root.destroy)

b.pack(side = 'bottom')

 2004 Ralph Noack 244

Main Routine
if __name__ == "__main__":

root = Tk()

app= GetQuoteApp(root)

root.mainloop()

 2004 Ralph Noack 245

Reading/Writing Fortran Unformatted Files
• The Fortran unformatted write statement, write(1),

creates a binary record in the file
• The record has a header and trailer that contains the

number of bytes in the record
For example
Integer*4 imax,jmax,kmax

write(1) imax,jmax,kmax

will create actually write the following information to the file if
imax=8, jmax=13, kmax=15:

12 8 1213 15

Record Count Record Countkmaxjmaximax

 2004 Ralph Noack 246

Reading/Writing Fortran Unformatted Files
• To read/write Fortran unformatted files the record header must be

included
• The record count can be used when reading the file to:

– Determine if the byte order of data in the file is little or big endian
– Determine the word size of data: 4 or 8 byte integers or floats
– Skip over unneeded information

• We will next discuss reading/writing binary/unformatted files in
Python

– Use Fortran unformatted PLOT3D grid files as the example
• PLOT3D grid file format for multiple grids with iblank:
READ(1) NGRID

READ(1) (JD(IG),KD(IG),LD(IG),IG=1,NGRID)

DO IG = 1,NGRID

READ(1) (((X(J,K,L),J=1,JD),K=1,KD),L=1,LD),

& (((Y(J,K,L),J=1,JD),K=1,KD),L=1,LD),

& (((Z(J,K,L),J=1,JD),K=1,KD),L=1,LD),

& (((IBLANK(J,K,L),J=1,JD),K=1,KD),L=1,LD)

EndDo

 2004 Ralph Noack 247

Python Read/Write Methods
• The Python read method returns a string or list of bytes

file=open(name,”r”)
data=file.read()
– data is a string

• The Python write method takes as an argument a string
file=open(name,”w”)
file.write(“this is a string”)

 2004 Ralph Noack 248

Struct Module
• The Python struct module provides methods to convert

data to/from numeric data and Python strings
– import struct to make it available
– Use the struct.pack(fmt,v1,v2,…) to convert/pack the

values in v1, v2, etc. into a string using the format specified in
fmt. A string is returned.

– Use the struct.unpack(fmt,str) to convert/unpack the
string str using the format specified in fmt. A tuple of the
unpacked values is returned.

– Use the struct.calcsize(fmt) to calculate the size in bytes
of the structure corresponding to the format specified in fmt

– Format string will contain a character code specifying the data type
for each variable to be converted

 2004 Ralph Noack 249

Struct Module Format Character Codes

integervoid *P

stringchar[]p

stringchar[]s

floatdoubled

floatfloatf

long longunsigned longQ

long longlongq

long longunsignedL

integerlongl

longunsigned intI

integerinti

integerunsigned shortH

integershorth

integerunsigned charB

integersigned charb

string of length 1charc

no valuepad bytex

Python TypeC TypeFormat

 2004 Ralph Noack 250

More on Struct Module Format String
• Need a conversion code for each variable to be converted
• Can have a repeat count:

“iiii” is the same at “4i”

• An optional first character of the format string will specify
the byte ordering of the packed data
– For example “<4i” will convert 4 integers and treat them as little-

endian byte order during the conversion

Standardbig-endian>

Standardlittle-endian<

Standard = (short = 2 bytes, int,long,float = 4 bytes, double = 8 bytes)native=

nativenative@

Size and alignmentByte orderCharacter

 2004 Ralph Noack 251

Using Struct Module To Read PLOT3D Grid
• First record in the file: READ(1) NGRID

– Remember the record count: one integer record has a 4 byte record
count

• First read the record count:
– Read with number of bytes specified:
rsize_str = file.read(4)

rsize = struct.unpack("i",rsize_str)

• Read the number of grids
ngrids_str = file.read(4)

ngrids, = struct.unpack("i",ngrids_str)

• Verify trailing record size
rsize_str = file.read(4)

rsize2 = struct.unpack("i",rsize_str)

if rsize2[0] != rsize[0]:

raise "trailing record size does not match header"

 2004 Ralph Noack 252

Changes to Determine Byteorder
• First record in the file: READ(1) NGRID

– We know that the record count should be 4
– Convert using big and little endian to determine byte order

rsize_str = file.read(4)

rsize_E = struct.unpack(">i",rsize_str)

rsize_e = struct.unpack("<i",rsize_str)

we expect rsize to be 4 as ngrids is a 32bit integer

if rsize_E[0] == 4:

byte_order_fmt=">"

elif rsize_e[0] == 4:

byte_order_fmt="<"

else:

print "wrong record size",rsize_E,rsize_e

raise "wrong record size“

• Prefix subsequent formats by byte_order_fmt

 2004 Ralph Noack 253

Read NGRID and Determine Byteorder
#!/usr/bin/env python2

import sys,struct

def ReadP3DgridNgrids(file):

rsize_str = file.read(4)

rsize_E = struct.unpack(">i",rsize_str)

rsize_e = struct.unpack("<i",rsize_str)

we expect rsize to be 4 as ngrids is a 32bit integer

if rsize_E[0] == 4: byte_order_fmt=">"

elif rsize_e[0] == 4: byte_order_fmt="<"

else:

print "wrong record size",rsize_E,rsize_e

raise "wrong record size"

read the number of grids

ngrids_str = file.read(4)

ngrids, = struct.unpack(byte_order_fmt+"i",ngrids_str)

verify trailing record size

rsize_str = file.read(4)

rsize2 = struct.unpack(byte_order_fmt+"i",rsize_str)

if rsize2[0] != 4:

raise "trailing record size does not match header"

return ngrids

 2004 Ralph Noack 254

OO Version; Page 1
#!/usr/bin/env python2

import sys,struct

class P3Dreader:

"Class to read in a plot3d fortran unformatted multi-grid
file"

def __init__(self,filename):

"Constructor opens the specified filename"

self.filename = filename

self.file=open(filename)

self.byte_order_fmt=""

def close(self):

self.file.close()

 2004 Ralph Noack 255

OO Version; Page 2
def ReadNgrids(self):

"read the number of grids in the file and determine byteorder"

rsize_str = self.file.read(4)

rsize_E = struct.unpack(">i",rsize_str)

rsize_e = struct.unpack("<i",rsize_str)

we expect rsize to be 4 as ngrids is a 32bit integer

if rsize_E[0] == 4:

self.byte_order_fmt=">"

elif rsize_e[0] == 4:

self.byte_order_fmt="<"

else:

print "wrong record size",rsize_E,rsize_e

raise "wrong record size"

read the number of grids

ngrids_str = self.file.read(4)

ngrids, = struct.unpack(self.byte_order_fmt+"i",ngrids_str)

verify trailing record size

rsize_str = self.file.read(4)

rsize2 = struct.unpack(self.byte_order_fmt+"i",rsize_str)

if rsize2[0] != 4:

raise "trailing record size does not match header"

self.ngrids = ngrids

 2004 Ralph Noack 256

OO Version; Page 3
if __name__ == "__main__":

for filename in sys.argv[1:]:

file=P3Dreader(filename)

file.ReadNgrids()

file.close()

print "%s has %d grids"%(filename,file.ngrids)

 2004 Ralph Noack 257

Read Grid Dimensions
• The second record in the Plot3d grid file contains the grid dimensions
READ(1) (JD(IG),KD(IG),LD(IG),IG=1,NGRID)

• Record size in bytes is NGRID*3*4
• Add method for P3Dreader class to read grid dimensions

– Create a format string to unpack the data
– Read the record and unpack the data
– Remember a tuple containing the data is returned
– Save the grid dimensions as object attributes

Create the format with the byte order switch and a repeat count

fmt=self.byte_order_fmt+"%di"%(self.ngrids*3,)

rsize_str = self.file.read(nbytes_record)

data = struct.unpack(fmt,rsize_str)

self.id=[0]*self.ngrids

self.jd=[0]*self.ngrids

self.kd=[0]*self.ngrids

for g in range(self.ngrids):

self.id[g]=data[g*3]

self.jd[g]=data[g*3+1]

self.kd[g]=data[g*3+2]

 2004 Ralph Noack 258

Read Grid Dimensions Method
def ReadDimensions(self):

"read the dimensions of each grid"

nbytes_record=self.ngrids*3*4

Read the leading record size

rsize_str = self.file.read(4)

rsize = struct.unpack(self.byte_order_fmt+"i",rsize_str)

if rsize[0] != nbytes_record:

raise "record size does not match expected value"
Create the format with the byteorder switch and a repeat count

fmt=self.byte_order_fmt+"%di"%(self.ngrids*3,)

rsize_str = self.file.read(nbytes_record)

data = struct.unpack(fmt,rsize_str)

verify trailing record size

rsize_str = self.file.read(4)

rsize2 = struct.unpack(self.byte_order_fmt+"i",rsize_str)

if rsize2[0] != nbytes_record:

raise "trailing record size does not match header"

self.id=[0]*self.ngrids

self.jd=[0]*self.ngrids

self.kd=[0]*self.ngrids

for g in range(self.ngrids):

self.id[g]=data[g*3]

self.jd[g]=data[g*3+1]

self.kd[g]=data[g*3+2]`

 2004 Ralph Noack 259

Read Grid Coordinates and IBLANK
• The next record in the Plot3d grid file contains the grid points and

iblank information.
• It is repeated for each grid

READ(1) (((X(J,K,L),J=1,JD),K=1,KD),L=1,LD),

& (((Y(J,K,L),J=1,JD),K=1,KD),L=1,LD),

& (((Z(J,K,L),J=1,JD),K=1,KD),L=1,LD),

& (((IBLANK(J,K,L),J=1,JD),K=1,KD),L=1,LD)

• Record size in bytes is
– For no IBLANK information: JD*KD*LD*3*WordSize
– With IBLANK information: JD*KD*LD*(3*WordSize+4)
– Where the WordSize is 4 for single precision and 8 for double precision

• Add method for P3Dreader class to read grid coordinates and iblank
– Read the reader header and determine

• If the grid points are single or double precision
• If IBLANK information is present

– Create a format string to unpack the data
– Read the record and unpack the data
– Save the grid data as object attributes

 2004 Ralph Noack 260

Use Record Size to Determine Word Size
• Compute the possible sizes for the record

npoints=self.id[grid]*self.jd[grid]*self.kd[grid]

calculate the possible sizes of the components of the record

single_size=npoints*3*4

double_size=npoints*3*8

iblank_size=npoints*4

• Compare the actual record size with the possible sizes to determine
word size and if file contains IBLANK

have_iblank=0

if rsize[0] == single_size:

self.grid_wordsize=4

elif rsize[0] == double_size:

self.grid_wordsize=8

elif rsize[0] == single_size+iblank_size:

self.grid_wordsize=4

have_iblank=1

elif rsize[0] == double_size+iblank_size:

self.grid_wordsize=8

have_iblank=1

else:

raise "record size does not match expected value"

 2004 Ralph Noack 261

Read the Grid Coordinate Record
if self.grid_wordsize == 4:

fmt=self.byte_order_fmt+"%df"%(npoints*3,)

elif self.grid_wordsize == 8:

fmt=self.byte_order_fmt+"%dd"%(npoints*3,)

data_str = self.file.read(npoints*3*self.grid_wordsize)

self.xyz[grid] = struct.unpack(fmt,data_str)

if have_iblank:

read the iblank information

Create the format with the byteorder switch and a repeat count

fmt=self.byte_order_fmt+"%di"%(npoints,)

data_str = self.file.read(npoints*4)

self.iblank[grid] = struct.unpack(fmt,data_str)

 2004 Ralph Noack 262

Read Method
• Add a read() method to read the whole file
• Complete module is in read_p3d_oo.py

def read(self):

file.ReadNgrids()

file.ReadDimensions()

for grid in range(self.ngrids):

self.ReadXYZIblank(grid)

if __name__ == "__main__":

for filename in sys.argv[1:]:

file=P3Dreader(filename)

file.read()

file.close()

print "%s has %d grids"%(filename,file.ngrids)

for g in range(file.ngrids):

print "(%d,%d,%d)"%(file.id[g],file.jd[g],file.kd[g])

 2004 Ralph Noack 263

Two-Dimensional Graphics and Plotting
• There are MANY packages available for Python for 2D graphics

– Low level drawing
• Tkinter (included with Python)
• Python Imaging Library (PIL): Image manipulation library including drawing

– http://www.pythonware.com/products/pil/
• Piddle

– http://piddle.sourceforge.net
• PyOpenGL

– PyStripchart Widget Library: Display time-sampled data in a strip chart
• http://jstripchart.sourceforge.net/

– Interface to gnuplot: gnuplot.py
• http://gnuplot-py.sourceforge.net

– DISLIN Scientific Data Plotting Software
• High level plotting library: Curves, polar plots, bar graphs, pie charts, 3D-

color plots, surfaces, contours, maps
• http://www.linmpi.mpg.de/dislin/

– Chaco (Part of the SciPy project)
• http://www.scipy.org/site_content/chaco

– Pyscript (Create Postscript graphics)
• http://pyscript.sourceforge.net/

 2004 Ralph Noack 264

Drawing With Tkinter
• Tkinter is included with Python
• Has a Canvas class for drawing, displaying images and text

– Canvas method requires a parent widget
• Must be drawn on the screen

– Can save as a Postscript file
• Requires conversion from Postscript to standard image formats
• May need to call update() to wait for window to be sized

canvas.update()

canvas.postscript(file=“output.ps”)

– Various draw methods have common optional attributes:
• fill=‘red’, width=2, …

#!/usr/bin/env python2

from Tkinter import *

root=Tk()

canvas=Canvas(root,width=200,height=200,bg='white')

canvas.pack()

root.mainloop()

 2004 Ralph Noack 265

Drawing With Tkinter: Arc
• create_arc() draws an arc/oval shaped region bounded by

start angle and end at start+extent angle
canvas.create_arc(10,10,190,190,outline='black',

fill='blue',

start=30.0,extent=300.0,width=3)

 2004 Ralph Noack 266

Drawing With Tkinter: Line
• create_line() draws a line with one or more segments

– Screen Coordinate system:
• Units are pixels
• X increases from left to right
• Y increases from TOP to BOTTOM

– Can provide set of points as arguments or a list of coordinates where each
item in the list is a tuple of the x,y pair

canvas.create_line(x0,y0,x1,y1,…,xn,yn,fill=“red”,
outline=“black”,width=3)

canvas.create_line(100,250,400,250,width=2,arrow='last')

n=50

xmax = 2.0*math.pi

dx=xmax/n

XY=[0]*n

for i in range(n):

x=i*dx

y=math.sin(x)

XY[i]=(100+x*300.0/xmax,150-y*100)

canvas.create_line(XY,width=2,fill='red')

 2004 Ralph Noack 267

Drawing With Tkinter: Rectangles
• create_rectangle() draws a rectangle at a specific location

– Screen Coordinate system:
• Units are pixels
• X increases from left to right
• Y increases from TOP to BOTTOM

– Optionally specify
• fill (color)
• outline (specifies a color for drawing the outline)
• width (width of the outline)

canvas.create_rectangle(x0,y0,x1,y1,fill=“red”,
outline=“black”,width=3)

 2004 Ralph Noack 268

Drawing With Tkinter: Polygon
• create_polygon() draws a polygon at a specific location

– Screen Coordinate system:
• Units are pixels
• X increases from left to right
• Y increases from TOP to BOTTOM

– Optionally specify
• fill (color)
• outline (specifies a color for drawing the outline)
• width (width of the outline)
• smooth (boolean to indicate if the boundary should be drawn as a

parabolic spline)
• splinesteps (number of line segments used to approximate split)

– For multiple segments you can provide a list of coordinates where
each item in the list is a tuple of the x,y pair

canvas.create_polygon(x0,y0,x1,y1,…,xn,yn,fill=“red”,
outline=“black”,width=3)

XY=[(x0,y0),(x1,y1)]

canvas.create_polygon(XY,fill=“red”, outline=“black”,width=3)

 2004 Ralph Noack 269

Example with Lines and Text; Page 1
#!/usr/bin/env python2

#tkinter_line.py

import math

from Tkinter import *

root=Tk()

canvas=Canvas(root,width=450,height=300,bg='white')

canvas.pack()

Button(root,text='quit',command=root.quit).pack()

canvas.create_line(100,250,400,250,width=2,arrow='last')

canvas.create_line(100,250,100,50,width=2,arrow='last')

for i in range(10): # xticks

x=100+i*30

canvas.create_line(x,250,x,245,width=2)

canvas.create_text(x,255,text='%d'%(10*i,),anchor=N)

for j in range(5): # yticks

y=250-j*40

canvas.create_line(100,y,105,y,width=2)

canvas.create_text(96,y,text='%5.1f'%(50.0*j,),anchor=E)

 2004 Ralph Noack 270

Example with Lines and Text; Page 2

n=50

xmax = 2.0*math.pi

dx=xmax/n

XY=[0]*n

for i in range(n):

x=i*dx

y=math.sin(x)

XY[i]=(100+x*300.0/xmax,150-y*100)

canvas.create_line(XY,width=2,fill='red')

canvas.update()

canvas.postscript(file="line.ps")

root.mainloop()

 2004 Ralph Noack 271

Example with Rectangle and Polygon
#!/usr/bin/env python2

import math

from Tkinter import *

root=Tk()

canvas=Canvas(root,width=400,height=200,bg='white')

canvas.pack()

canvas.create_rectangle(10,10,190,190,

outline='black',fill='blue',

width=3)

n=50

xmax = math.pi

dx=xmax/n

XY=[0]*n

for i in range(n):

x=i*dx

y=math.sin(x)

XY[i]=(100+x*300.0/xmax,150-y*100)

canvas.create_polygon(XY,outline='black',fill='red',width=3)

root.mainloop()

 2004 Ralph Noack 272

Python Imaging Library (PIL)
• PIL adds image processing capabilities to your Python

programs
• Has extensive file format support
• Fairly powerful image processing capabilities.
• Obtain it from:
http://www.pythonware.com/products/pil/
• Free with commercial support available

 2004 Ralph Noack 273

A Few Possible Uses of PIL
• Image Archives

– Ideal for image archival and batch processing applications.
– Create thumbnails
– Convert between file formats
– Print images
– Current version identifies and reads a large number of formats
– Write support is intentionally restricted to the most commonly used

interchange and presentation formats.
• Image Display

– The current release includes Tk PhotoImage and BitmapImage interfaces
• Image Processing

– Library contains some basic image processing functionality
– Point operations
– Filtering with a set of built-in convolution kernels
– Color space conversions
– Image resizing
– Rotation
– Arbitrary affine transforms
– A histogram method produces some statistics of an image

 2004 Ralph Noack 274

Loading/Creating an Image Using PIL
• Load an existing image with image.open(filename)
• Creates a new image with image.new(mode, size)
• The mode of an image defines the type and depth of a pixel in the

image.
– 1 (1-bit pixels, black and white, stored as 8-bit pixels)
– L (8-bit pixels, black and white)
– P (8-bit pixels, mapped to any other mode using a colour palette)
– RGB (3x8-bit pixels, true colour)
– RGBA (4x8-bit pixels, true colour with transparency mask)
– CMYK (4x8-bit pixels, colour separation)
– YCbCr (3x8-bit pixels, colour video format)
– I (32-bit integer pixels)
– F (32-bit floating point pixels)
– RGBX (true colour with padding)
– RGBa (true colour with premultiplied alpha).

• Size is given as a 2-tuple specifying the horizontal and vertical size in
pixels.

 2004 Ralph Noack 275

Loading an Image Using PIL
• Creates a new image with specified background color

– image.new(mode, size, color)

• Color is
– A single value for single-band images
– A tuple for multi-band images (with one value for each band).
– If the color argument is omitted, the image is filled with black.
– If the color is None, the image is not initialized.

 2004 Ralph Noack 276

Drawing Using PIL
• The ImageDraw module provide basic graphics support for Image

objects.
• It can be used to

– Create new images
– Annotate or retouch existing images
– Generate graphics on the fly

• Draw methods are very similar to the Tkinter Canvas routines
• Coordinate system is x increases from left to right, y increases from

top to bottom.
import Image

import ImageDraw

load an image

im = Image.open("lena.pgm")

Creates an object that can be used

to draw in the given image.

Note that the image will be modified in place.

draw = ImageDraw.Draw(im)

 2004 Ralph Noack 277

Drawing Using PIL: arc and pieslice
• draw.arc(xy, start, end, options)

– Draws an arc (a portion of a circle outline) between the start and
end angles, inside the given bounding box.

• xy specifies the bounding box as an array of tuples
– [(x0,y0),(x1,y1)]

• The fill option gives the color to use for the arc.
draw.arc([x0,y0,x1,y1],0,270,fill="blue“)

• draw.pieslice(xy, options)
– Same as arc, but also draws straight lines between the end points

and the center of the bounding box.
– The fill option gives the color to use for the interior.
– The outline option gives the color for the bounding curbe

draw.pieslice([x0,y0,x1,y1],30,330,fill="blue",
outline='red')

 2004 Ralph Noack 278

Drawing Using PIL: arc and pieslice
#! /usr/bin/env python2

import sys,os

sys.path.append("/home/noack/local/Python/PIL")

import Image, ImageDraw

import math,string,re

image=Image.new("RGB",(230,120),(256,256,0))

draw=ImageDraw.Draw(image)

x0=10; y0=10; x1=110; y1=110

draw.arc([x0,y0,x1,y1],0,270,fill="blue")

x0=120; x1=220

draw.pieslice([x0,y0,x1,y1],30,330,fill="blue",outline='red')

#line = [(x0,y0),(x1,y1)]

#draw.line(line,fill=0)

file=open("pil_arc.png","w")

image.save(file,"PNG")

file.close()

 2004 Ralph Noack 279

Drawing Using PIL: line
• draw.line(xy, options)

– Draws a line between the coordinates in the xy list.
– The coordinate list can be any sequence object containing either

• 2-tuples [(x, y), ...] or numeric values [x, y, ...].
• It should contain at least two coordinates.

– The fill option gives the color to use for the line.
– Coordinate system is left to right, top to bottom

 2004 Ralph Noack 280

Drawing Using PIL: line
#! /usr/bin/env python2

import sys,os

sys.path.append("/home/noack/local/Python/PIL")

import Image, ImageDraw

import math,string,re

image=Image.new("RGB",(320,320),(0,256,256))

draw=ImageDraw.Draw(image)

xo=10;yo=10

draw.line([(xo+300,yo),(xo,yo),(xo,yo+300)] ,fill='red')

draw.line([xo,150,xo+300,150] ,fill='black')

n=51

xmax = 2.0*math.pi

dx=xmax/(n-1)

XY=[0]*n

for i in range(n):

x=i*dx; y=math.sin(x)

XY[i]=(10+x*300.0/xmax,150-y*100)

draw.line(XY,fill='blue')

file=open("pil_line.png","w")

image.save(file,"PNG")

file.close()

 2004 Ralph Noack 281

Drawing Using PIL: polygon
• draw.polygon(xy, options)

– Draws a polygon bounded by the coordinates in the xy list.
– The coordinate list can be any sequence object containing either

• 2-tuples [(x, y), ...] or numeric values [x, y, ...].
• It should contain at least two coordinates.

– The fill option gives the color to use for the interior of the polygon.
– The outline option gives the color to use for the boundary of the

polygon.
– Coordinate system is left to right, top to bottom

 2004 Ralph Noack 282

Drawing Using PIL: line
#! /usr/bin/env python2

import sys,os

sys.path.append("/home/noack/local/Python/PIL")

import Image, ImageDraw

import math,string,re

image=Image.new("RGB",(320,320),(0,256,256))

draw=ImageDraw.Draw(image)

draw.polygon([10,10, 310,10, 160,310, 10,10] ,

fill='blue',outline="red")

file=open("pil_poly.png","w")

image.save(file,"PNG")

file.close()

 2004 Ralph Noack 283

Combining Python With Other Languages
• There are two ways to use Python with other languages

such as C/C++/FORTRAN.
– Embedding

• The other language accesses the Python interpreter
• Use Python to provide an extension language to your program

– Extension writing
• Extend Python with new capabilities written in another language

– Add new modules which access routines written in other
language

• Provides speed of compiled language

• We will discuss extension writing to provide access to
routines written in another language

Python

C/C++/etc.
EmbeddingExtending

 2004 Ralph Noack 284

Interfacing Python To Another Languages
• Python objects are not directly usable in other language

and vice versa
• Wrapper functions are required to translate data between

the two languages
– Python will call the wrapper function
– Wrapper function will

• Convert arguments from Python object to desired data type
• Call the desired function in the other language
• Create a Python object for any return values
• Return the Python object to Python

• Documentation can be found at
– http://www.python.org/doc/current/ext/ext.html

• Our extention will be imported as a module

Python Wrapper My function

 2004 Ralph Noack 285

Example Extension Module
• Have a C function to calculate the factorial of a number
int factorial(int n)

{

if (n < 2) return 1;

return (n*factorial(n-1));

}

#ifdef TESTING

include <stdio.h>

include <stdlib.h>

include <string.h>

int main(int argc,char **argv)

{

int n;

n=atoi(argv[1]);

printf("Factorial of %d is %d\n",n,factorial(n));

return 0;

}

#endif

 2004 Ralph Noack 286

Example Extension Module
• We will create a wrapper function that allows us to call the

factorial function from Python
– We will call our wrapper function factorial_wrap
– File is called factorial_wrap_byhand.c

• It will be a function within a module called MyModule
– Python code function code will be MyModule.factorial(n)

• First line of code should be to include “Python.h”
• Next include header file with function prototype for the

factorial function: int factorial(int n);

#include "Python.h"

#include "factorial.h"

 2004 Ralph Noack 287

Wrapper Function Arguments
• The wrapper function

– Returns a PyObject
– Has two arguments:

• PyObject *self

– The self argument is only used when the C function implements a built-in method
– We are defining a function, not a method, so self will always be a NULL pointer

• PyObject *args

– The arguments passed to the Python call to the function
#include "Python.h"

#include "factorial.h"

PyObject *factorial_wrap(PyObject *self,PyObject *args)

{

}

 2004 Ralph Noack 288

Extract C Data Types From Arguments
• We must extract C data types from the args arguments

– PyArg_ParseTuple is used to convert non-keyword arguments
– PyArg_ParseTupleAndKeywords is used to convert keyword arguments
– Use a format string to determine how to convert the Python object

• “i” for integer
• “f” for float
• “d” for double
• Etc.

#include "Python.h"

#include "factorial.h"

PyObject *factorial_wrap(PyObject *self,PyObject *args)

{

int n;

if (! PyArg_ParseTuple(args,"i“,&n)){return NULL;}

}

 2004 Ralph Noack 289

Call The C code
• We then call the function from our C code using the value

retrieved from the argument
#include "Python.h"

#include "factorial.h"

PyObject *factorial_wrap(PyObject *self,PyObject *args)

{

int n,result;

if (! PyArg_ParseTuple(args,"i",&n)) {return NULL;}

/* call my function with the argument retrieved from python */

result = factorial(n);

}

 2004 Ralph Noack 290

Return Value as PyObject
• Finally must convert the return value from our function to

a PyObject and return it
– Use a format to specify how to convert the value

#include "Python.h"

#include "factorial.h"

PyObject *factorial_wrap(PyObject *self,PyObject *args)

{

int n,result;

if (! PyArg_ParseTuple(args,"i",&n)) {return NULL;}

/* call my function with the argument retrieved from python */

result = factorial(n);

/* return the result after building the python object */

return Py_BuildValue("i",result);

}

 2004 Ralph Noack 291

Build Method Table
• Must tell Python

– The name of the methods as called from Python
– The wrapper function address
– A flag specifying the calling convention

• METH_VARARGS or METH_KEYWORDS or bitwise OR of the
two: METH_VARARGS | METH_KEYWORDS

#include "Python.h"

#include "factorial.h"

PyObject *factorial_wrap(PyObject *self,PyObject *args)

{

………

}

static PyMethodDef MyModuleMethods[]= {

{ "factorial",factorial_wrap, METH_VARARGS},

{ NULL,NULL}, /* sentinel value to terminate list */

};

 2004 Ralph Noack 292

Module Initialization Function
• Need a function for Python to call when initializing the module

– Function is called initMODULENAME
– Pass it the method table

#include "Python.h"

#include "factorial.h"

PyObject *factorial_wrap(PyObject *self,PyObject *args)

{

………

}

static PyMethodDef MyModuleMethods[]= {

{ "factorial",factorial_wrap, METH_VARARGS},

{ NULL,NULL}, /* sentinel value to terminate list */

};

void initMyModule()

{

Py_InitModule("MyModule",MyModuleMethods);

}

 2004 Ralph Noack 293

Compiling the Extension Module
• We will create a shared object file for the wrapper and the C code.

– Allows the module to be dynamically loaded by Python interpreter
– Creates a file called MyModule.so

• Must be placed in PYTHONPATH
– Makefile

SO= .so

LDSHARED= gcc -fPIC -shared

CCFLAGS_SHARED= -fPIC

PYTHON_INC = -I/usr/include/python2.2

CC = gcc

CFLAGS = -g -Wall $(CCFLAGS_SHARED) $(PYTHON_INC)

OBJS = factorial.o factorial_wrap_byhand.o

MyModule$(SO): $(OBJS)

$(LDSHARED) $(OBJS) -o $@

 2004 Ralph Noack 294

Using the Extension Module
• Make it available by import MyModule
>>> import MyModule

>>> fact=MyModule.factorial(5)

>>> print fact

120

>>> dir(MyModule)

['__doc__', '__file__', '__name__', 'factorial']

>>>

 2004 Ralph Noack 295

Extend Python with FORTRAN Using Pyfort
• Pyfort is a tool for connecting Fortran routines (and

Fortran-like C) to Python
• You write a function/subroutine prototype/specification
• Pyfort generates the wrapper function for interfacing

Fortran with Python
• Requires Numerical Python array extension for arrays
• Uses Tkinter and Python megawidgets (Pmw) for GUI

project file editor
– Home for Pmw is: http://pmw.sourceforge.net

• Obtain it from http://sourceforge.net/projects/pyfortran
• Will work with several different Fortran compilers

– g77, Portland Group (pgf77,pgf90),
– Have a mechanism to add other compilers

 2004 Ralph Noack 296

Obtaining Numerical Python
• Numerical Python add fast and compact multidimensional

arrays to Python
• Used by several other extension modules

– PyOpenGL, Pyfort,…

• Obtain from:
– http://www.pfdubois.com/numpy
– http://sourceforge.net/projects/numpy

• Two versions
– Numeric is the older more stable release

• Current version is 23.1
– Numarray is a rewrite of Numeric and will replace Numeric

• Current version is 0.7

 2004 Ralph Noack 297

Installing Numerical Python
• We'll install the packages in ~/local/Python

– They will be in ~/local/Python/lib/python

• Need to add this directory to the PYTHONPATH variable
setenv PYTHONPATH ${PYTHONPATH}:/${HOME}/local/Python/lib/python

• Extract the source in a directory
tar xzvf Numeric-23.1.tar.gz

• Build and install in the specified directory
cd Numeric-23.1
python2 setup.py build
python2 setup.py install --home=${HOME}/local/Python

 2004 Ralph Noack 298

Installing Pyfort
• Obtain it from http://sourceforge.net/projects/pyfortran
• Pyfort will install itself and your modules in a system

directory (/usr/lib/python….) unless you specify an
alternate location

• Installing it in our home does not require root privaledges
– Add appropriate directory to the PYTHON PATH

setenv PYTHONPATH \
${PYTHONPATH}:${HOME}/local/Python/lib/python2.2/site-packages/
– Edit configuration.py

• Set prefix=‘/your_home_dir/local/Python/'

• setup.py install --prefix=~/local/Python
– Will install Pyfort and your modules in
~/local/Python/lib/python2.2/site-packages

• Pyfort utility is installed in: ~/local/Python/bin/

 2004 Ralph Noack 299

Using Pyfort
• Pyfort takes a ”module file” that specifies the interface or

function prototype
• Creates

– A C source file that provides the glue between the Fortran code
and Python

– A text file describing the interface

• Can also have a project file to build/install/uninstall several
Pyfort modules
– Pyfort has a gui to help create the project file

 2004 Ralph Noack 300

Pyfort Module File
• The Pyfort ”module file” is named module_name.pyf
• Creates and installs a module called module_name
• Contains the interface/prototype specification for one or

more Fortran routines.
– Describes the input and return values
– Syntax is similar to modern Fortran

• The module file is case-insensitive.
• Routines will be called from Python using lower case.
• Python doc strings will be generated from appropriate

comments

 2004 Ralph Noack 301

Pyfort Example: Fortran Routine
C This routine works only for x sorted

function percentile(d, n, x)

integer n

real x(n), d

real percentile

if (d .lt. x(1)) then

percentile = 0.0

return

elseif (d. gt. x(n)) then

percentile = 100.0

return

else

do 100 i = 1, n

if (x(i) .ge. d) then

percentile = (i*100.0/n)

return

endif

100 continue

endif

end

 2004 Ralph Noack 302

Example Interface Specification
function percentile(d, n, x)
! Given a sorted x(n), calculate the percentile of observation d

integer n = size(x)

real x(n), d, percentile

end function percentile

• Start with function or subroutine, function
name and argument list

• Comment begins with !
– Comment right after function or subroutine line becomes

the doc string

• Specify the type and dimension of the arguments and the
return value of the function
– integer n = size(x) declares that the array size should be

calculated and not passed as an argument

• Will call from Python as module.percentile(d,x)

 2004 Ralph Noack 303

Fortran Arguments declared intent(out)
• Arguments declared as out will not be part of the Python

call list
subroutine mysub (x, y, n)

integer n

real x (n)

real, intent (out):: y (n)

end

• Will call from Python as y = mysub(x, len (x))

• Can further simplify
subroutine mysub (x, y, n)

integer n = size(x)

real x (n)

real, intent (out):: y (n)

end

• Will call from Python as y = mysub(x)

 2004 Ralph Noack 304

Example Using Pyfort
• We’ll examine the demo that comes with Pyfort
• Percentile function and module interface from previous slides
• Run pyfort to create C code, compile and install

~/local/Python/bin/pyfort -i pyfdemo
• Create Python code to use the pyfdemo module
#!/usr/bin/env python2

import pyfdemo

print dir(pyfdemo)

score = 75.0

create list of scores

n=11

scores=[0]*n

for i in range(n):

scores[i]=(i-1)*10

print pyfdemo.percentile.__doc__

pctile=pyfdemo.percentile(score,scores)

print pctile

 2004 Ralph Noack 305

Automated Tools to Extend Python
• Hand generation of wrapper can be tedious and error prone

– Need to update wrapper if function calls change
– A library may contain hundreds of functions

• SWIG - generate C/C++ interface code for Python
– http://www.swig.org

• SIP - generate C++ interface code for Python
– http://www.riverbankcomputing.co.uk/sip

• Boost.Python - wrapping C++ classes with a Python interface
– http://www.boots.org/libs/python/doc

• Fortran to Python interface generator: F2PY
– http://cens.ioc.ee/project/f2py2e

• Pyrex - a language for writing Python extension modules
– http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex

• PyInline/Weave - embed C/C++/Perl code inside your Python script
– http://pyinline.sourceforge.net

 2004 Ralph Noack 306

SWIG
• Simple Wrapper Interface Generator

– A compiler that turns ANSI C/C++ declarations into scripting
languages interfaces

• Not a full C/C++ compiler
– Fully automated

• Eliminates/Reduces writing of extension modules by hand
• Produces a useable module

– Language Neutral
• Targets Python, Tcl, Perl, MATLAB, etc.

 2004 Ralph Noack 307

SWIG Interface File
• Input file contains ANSI C/C++ declarations and special

SWIG directives
• SWIG directives are always preceded by a "%" to

distinguish them from normal C declarations
– Specify the module name

%module mymodule
– Anything between %{ and %} is included verbatim into the

wrapper code
%{
#include "myheader.h"
%}

• Include ANSI C/C++ directives of functions/variables to
be included in the module

 2004 Ralph Noack 308

Building Module
• Best to use a Makefile to automate the steps

– Generate wrapper code
swig -includeall -python p3dlib_all.i

– Compile the wrapper code and other source code
– Generate position-independent code, suitable for use in a shared

library (gcc –fpic)
CC = gcc
CFLAGS = -g -Wall –fPIC
PYTHON_INC = -I/usr/include/python2.2
$(CC) $(CFLAGS) $(PYTHON_INC) -c p3dlib_all_wrap.c -o p3dlib_all_wrap.o

– Link into shared library
• gcc -shared

LDSHARED = gcc –shared
$(LDSHARED) $(P3DLIB_OBJS) p3dlib_all_wrap.o -o _p3dlib_all.so

– Copy _p3dlib_all.so p3dlib_all.py into directory in
PYTHONPATH

 2004 Ralph Noack 309

Other Useful SWIG directives
• %init %{ ... %} inserts code into the module initialization function.

– Variable initialization, call to initialize a library/device, etc.
• %inline %{ ... %} inserts code into the header section and "wraps" it.

– Allows you to insert hand written interfaces that may not be in the library
– Useful for returning multiple values as a tuple

//file: p3dlib.i

%module p3dlib

%{

#include "p3dlib.h"

%}

struct p3d_strGridIO *

p3d_LoadP3dFile(char *filename,int wordsize);

%inline %{

PyObject * p3d_GetDimsGridFromSRDR(struct p3d_strGridIO *srdr,int g)

{

return Py_BuildValue("iii",

srdr->grids[g]->imax,srdr->grids[g]->jmax,srdr->grids[g]->kmax);

}

%}

 2004 Ralph Noack 310

SWIG directives in C/C++ Header File
• SWIG defines the preprocessor symbol SWIG

– Put SWIG directives in C/C++ header file
– Use #ifdef SWIG to isolate swig directives when compiling the

header in C/C++ code
#ifdef SWIG

%module p3dlib

%{

#include "p3dlib.h"

%}

#endif /* def SWIG */

 2004 Ralph Noack 311

Using P3Dlib as Python Module
• An example of using the wrapped P3Dlib within Python
• Python code will extract edges of all the grids in a Plot3d

grid file and write them as separate files

 2004 Ralph Noack 312

extract_edgesp3d.py: Page 1

#! /usr/bin/env python2

from p3dlib import *

filename="test.p3du"

create the Structured grid ReaDeR object

store grid as double precision

srdr = p3d_LoadP3dFile_vector_xyz(filename,8)

#get the number of zones/grids in the file

nz = p3d_GetNumGrids(srdr)

 2004 Ralph Noack 313

extract_edgesp3d.py: Page 2
write each zone as a separate file

name appends _#
write file type is p3dwibud:

plot3d, with iblank, fortran unformatted, double prec

ext = "p3dwibud"
format,style,mod,form,prec,endian = p3d_GetFormatFromStdExt(ext)

for i in range(nz):
get pointer to the zone

zptr=p3d_GetStructuredGridFromSRDR(srdr,i)

imax,jmax,kmax= p3d_GetGridDimTuple(zptr)

iminedge=p3d_ExtractSubGrid(zptr, 1, 1, 1,jmax, 1,1)

imaxedge=p3d_ExtractSubGrid(zptr,imax,imax, 1,jmax, 1,1)

jminedge=p3d_ExtractSubGrid(zptr,1,imax, 1, 1, 1,1)

jmaxedge=p3d_ExtractSubGrid(zptr,1,imax, jmax,jmax, 1,1)

output_filename = filename + "_" + `i` + "." + ext

create the output object

osrdr = p3d_New_p3d_strGridIO(output_filename, format,8)

 2004 Ralph Noack 314

extract_edgesp3d.py: Page 3

for i in range(nz):

………
osrdr = p3d_New_p3d_strGridIO(output_filename, format,8)

copy edges to the output

p3d_AddGrid2SRDR(osrdr,iminedge)

p3d_AddGrid2SRDR(osrdr,imaxedge)

p3d_AddGrid2SRDR(osrdr,jminedge)

p3d_AddGrid2SRDR(osrdr,jmaxedge)

set the output to the desired format

p3d_Set_Plot3d_Writer(osrdr,output_filename,format);

write the file (also closes it)

p3d_WriteStructGridFile(osrdr)

 2004 Ralph Noack 315

F2PY: Fortran to Python Interface Generator
• The F2PY Fortran to Python interface generator provides a

connection between Python and Fortran languages.
• F2PY is a Python package that facilitates creating/building

Python C/API extension modules
– Provides ability to call Fortran 77/90/95 external subroutines and

Fortran 90/95 module subroutines as well as C functions
– Provides access to Fortran 77 COMMON blocks and Fortran 90/95

module data, including allocatable arrays from Python.
– Like SWIG but for Fortran
– F2PY uses scipy distutils that contains support for a number of

Fortran 77/90/95 compilers

• Web site is: http://cens.ioc.ee/projects/f2py2e/

 2004 Ralph Noack 316

F2PY: Steps to Produce Module
• Wrapping Fortran or C functions to Python using F2PY

consists of three steps
– Creating the signature file that contains descriptions/prototypes of

wrappers to Fortran or C functions.
• For Fortran routines, F2PY can create initial version of a signature

file by scanning Fortran source codes
• F2PY created signature files can be edited to optimize wrappers

functions, make them smarter and more Pythonic
• F2PY directives can be added to the Fortran source to reduce editing

of the signature files
– F2PY reads a signature file and constructs the Fortran/C/Python

bindings as a Python C/API module. "
– F2PY compiles all sources and builds an extension module

containing the wrappers.

• For simple cases the steps can be combined and run with
one command

 2004 Ralph Noack 317

Installing F2PY
• Download and extract the latest source

– Prerequisites:
• Python (versions 1.5.2 or later; 2.1 and up are recommended)
• NumPy/Numeric (versions 13 or later; 20.x, 21.x, 22.x, 23.x are

recommended)
• Numarray (version 0.4.4 and up), optional, partial support.
• Fortran compiler

• Installation:
python2 setup.py install –home=~/local/Python

– Build and install in home directory
– Installs

• ~/local/Python/bin/f2py2
• ~/local/Python/lib/python/f2py2e/

 2004 Ralph Noack 318

Simple Example: FIB1.F
C FILE: FIB1.F

SUBROUTINE FIB(A,N)

C

C CALCULATE FIRST N FIBONACCI NUMBERS

C

INTEGER N

REAL*8 A(N)

DO I=1,N

IF (I.EQ.1) THEN

A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN

A(I) = 1.0D0

ELSE

A(I) = A(I-1) + A(I-2)

ENDIF

ENDDO

END

C END FILE FIB1.F

 2004 Ralph Noack 319

Simple Example: FIB1.F
• Run F2PY to create module
~/local/Python/bin/f2py2 -c fib1.f -m fib1
• Use the module. Use Numeric module to create array
>>> import fib1

>>> dir(fib1)

['__doc__', '__file__', '__name__', '__version__',
'as_column_major_storage', 'fib',
'has_column_major_storage']

>>> import Numeric

>>> a=Numeric.zeros(8,'d')

>>> fib1.fib(a)

>>> print a

[0. 1. 1. 2. 3. 5. 8. 13.]

>>> print fib1.fib.__doc__

fib - Function signature:

fib(a,[n])

Required arguments:

a : input rank-1 array('d') with bounds (n)

Optional arguments:

n := len(a) input int

 2004 Ralph Noack 320

F2PY Modes: Generate a Signature File
• F2PY has three major modes selected by command line

options
– To scan Fortran sources and generate a signature file
f2py -h signature_filename.pyf list_fortran_files
~/local/Python/bin/f2py2 -h junk.pyf fib1.f
$ cat junk.pyf

! -*- f90 -*-

subroutine fib(a,n) ! in fib1.f

real*8 dimension(n) :: a

integer optional,check(len(a)>=n),depend(a) ::
n=len(a)

end subroutine fib

! This file was auto-generated with f2py
(version:2.37.233-1545).

! See http://cens.ioc.ee/projects/f2py2e/

 2004 Ralph Noack 321

F2PY Modes: Create module code
• To construct an extension module

– For Fortran90 modules
f2py list_fortran_files
– For Fortran77
f2py -m module_name list_fortran_files
– Creates a file called module_namemodule.c
~/local/Python/bin/f2py2 -m fib1 fib1.f
Creates the file fib1module.c

 2004 Ralph Noack 322

F2PY Modes: Build module
• To build an extension module

f2py -c list_fortran_files
– Creates a file called untitled.so
– To specify the module name to be created use the –m flag
~/local/Python/bin/f2py2 -c -m fib1 fib1.f
Creates the file fib1.so

 2004 Ralph Noack 323

Python Access to Fortran Common Blocks
• F2PY generates wrappers to common blocks
• In Python, the F2PY wrappers to common blocks are

Fortran type objects that have (dynamic) attributes related
to data members of common blocks.

• When accessed, these attributes return as Numeric array
objects (multi-dimensional arrays are Fortran-contiguous)
that directly link to data members in common blocks.

• Data members can be changed by direct assignment or by
in-place changes to the corresponding array objects.

 2004 Ralph Noack 324

F2PY Directives
• The signature files may need to be changed to properly

reflect the intent of each argument
• Rather than editing the signature file F2PY directives can

be placed in the Fortran source code
– An F2PY directive has the following form:

• <comment char>f2py ...
• Where allowed comment characters for fixed and free format Fortran

codes are cC*!# and !, respectively
• Directive is ignored by the Fortran compiler

– Examples:
• Cf2py intent(in) n
• Cf2py intent(out) a

 2004 Ralph Noack 325

F2PY Directives
• intent(<intentspec>) arg_list: specifies the intention of the

arguments in the list.
– <intentspec> is a comma separated list of keys

• The two most common are:
– in: The argument is considered as an input only argument.
– out: The argument is considered as an return variable.

– Cf2py intent(in) a
– Cf2py intent(out) r

• depend([<names>]) arg_list: declares that the
corresponding argument depends on the values of variables
in the list <names>
– Cf2py depend(n) a

• optional: The corresponding argument is moved to the end
of <optional arguments> list. A default value for an
optional argument can be specified
– Cf2py integer optional,intent(in) :: n = 13

 2004 Ralph Noack 326

F2PY Directives: Example FIB3.F
C FILE: FIB3.F

SUBROUTINE FIB(A,N)

C

C CALCULATE FIRST N FIBONACCI NUMBERS

C

INTEGER N

REAL*8 A(N)

Cf2py intent(in) n

Cf2py intent(out) a

Cf2py depend(n) a

DO I=1,N

IF (I.EQ.1) THEN

A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN

A(I) = 1.0D0

ELSE

A(I) = A(I-1) + A(I-2)

ENDIF

ENDDO

END

C END FILE FIB3.F

 2004 Ralph Noack 327

F2PY Directives: Example FIB3.F
>>> import fib3

>>> y=fib3.fib(10)

>>> print y

[0. 1. 1. 2. 3. 5. 8. 13. 21. 34.]

 2004 Ralph Noack 328

F2PY Directives: Example FTYPE.F
C FILE: FTYPE.F

SUBROUTINE FOO(N)

INTEGER N

Cf2py integer optional,intent(in) :: n = 13

REAL A,X

COMMON /DATA/ A,X(3)

PRINT*, "IN FOO: N=",N," A=",A,"
X=[",X(1),X(2),X(3),"]"

END

C END OF FTYPE.F

 2004 Ralph Noack 329

F2PY Directives: Example FTYPE.F
>>> import ftype

>>> ftype.foo()
IN FOO: N= 13 A= 0.0000000E+00 X=[0.0000000E+00 0.0000000E+00

0.0000000E+00]

>>> dir(ftype)

['__doc__', '__file__', '__name__', '__version__',
'as_column_major_storage', 'data', 'foo',
'has_column_major_storage']

data is the common block

>>> ftype.data.x[0]=0

>>> ftype.data.x[0]=1

>>> ftype.data.x[1]=2

>>> ftype.data.x[2]=3

>>> ftype.foo(5)

IN FOO: N= 5 A= 0.0000000E+00 X=[1.000000 2.000000

3.000000]

 2004 Ralph Noack 330

VPython
• VPython is a 3D graphics module that is exceptionally

easy to use
• Can create simple 3D objects and position them in space
• VPython handles updating the 3D scene many times a

second to reflect the current positions of objects
– Simplifies animating objects

• Programmer can focus on the computational aspects and
does not need to deal with display management.

• Navigation/Viewpoint can be controlled by using the
mouse to zoom and rotate.

 2004 Ralph Noack 331

Obtaining and Installing VPython
• Prerequisites:

– Python2.2 or higher
– Gtk+1.2
– Gtkglarea
– Pkg-config
– OpenGL
– These could be already installed in a Redhat installation

• Web site: http://www.vpython.org/
• Extract tar archive
• Set python executable to use

setenv PYTHON /usr/bin/python2.2
• Configure

./configure --prefix=${HOME}/local/Python
• Make

make install

 2004 Ralph Noack 332

VPython Objects
• Cylinder

cylinder(pos=(0,2,1), axis=(5,0,0), radius=1)

• Arrow: straight box-shaped shaft with an arrowhead at one
end
arrow(pos=(0,2,1), axis=(5,0,0), shaftwidth=1)

• Cone: circular cross section and tapers to a point
cone(pos=(5,2,0), axis=(12,0,0), radius=1)

• Pyramid: rectangular cross section and tapers to a point
pyramid(pos=(5,2,0), size=(12,6,4))

• Sphere: Position is the center of the Sphere
sphere(pos=(1,2,1), radius=0.5)

 2004 Ralph Noack 333

VPython Objects
• Ring: circular, with a specified outer radius and thickness,

and with its center given by the pos attribute, in plane
normal to axis:
ring(pos=(1,1,1), axis=(0,1,0), radius=0.5, thickness=0.1)

• Box: Position is the center of the box
mybox = box(pos=(x0,y0,z0), length=L, height=H, width=W)

• Curve: Straight lines between points
curve(pos=[(0,0),(0,1),(1,1),(1,0),(0,0)])

• Convex: Convex hull of a list of points
• Label: display text in a box
• Faces: primitive that takes a list of triangles (position,

color, and normal for each vertex)
• Frame: used to group objects together to make a composite

object that can be moved and rotated together

 2004 Ralph Noack 334

VPython Faces
• The VPython faces primitive takes a list of triangles

– The triangle is specified by the position, color, and normal for each vertex
– The pos, color, and normal attributes are lists containing the data

• First three vertices are for the first triangle, etc.
• Clockwise cyclic order of the three vertices determines the lighted side of the

face
– Need to use a frame to have motion

• The Vector object is not a display object but simplifies the 3D
computations

– vector(x,y,z) returns a vector object with the given components
– Vectors can be added or subtracted from each other, or multiplied by an

ordinary number. For example,
v1 = vector(1,2,3)
v2 = vector(10,20,30)
print v1+v2 # displays (11 22 33)
print 2*v1 # displays (2 4 6)
– You can refer to individual components of a vector:
v2.x is 10, v2.y is 20, v2.z is 30

 2004 Ralph Noack 335

VPython Faces Example
#!/usr/bin/env python2

vpython_faces.py

import sys,string,re,math

from visual import *

f = frame(axis=(1,0,0))

triangle = faces(frame = f)
create the vertices

v1 = vector(0.0,0.0,0.0)

v2 = vector(1.0,0.0,0.0)

v3 = vector(0.5,0.5,0.0)
calculate the normal to the triangle

normal = norm(cross(v2-v1, v3-v1))

add the triangle vertices to our faces object

triangle.append(pos=v1, color=(1,0,0), normal=normal)

triangle.append(pos=v2, color=(0,1,0), normal=normal)

triangle.append(pos=v3, color=(0,0,1), normal=normal)
animate it

dt=0.01; velocity=vector(-1,-1,0)

dth=dt*2.0*math.pi/10.0

while 1:

rate(30)

triangle.pos = triangle.pos + velocity*dt

rotates about current position

f.rotate(angle=dth)

 2004 Ralph Noack 336

VPython Example
• VPython comes with many demo programs
• We will create one to display an unstructured surface mesh

and put the object in motion
– Read a file containing the triangular surface mesh
– Create a VPython object using faces() to display the object
– Use a frame to animate it

• File is flex format
– :xyz num_nodes

• Followed by x(i) y(i) z(i) for each node
:xyz 158279
0.41076500E+01 0.35345000E+00 0.35345000E+00

– :connectivity_faces num_faces num_nodes_face num_nei
• Followed by (node_index(j,iface),j=1,num_nodes_face),

(nei(j,iface),j=1,num_nei)
:connectivity_faces 13924 3 2 1 13924
712 711 145 1 -3

 2004 Ralph Noack 337

VPython Example: Page 1
#!/usr/bin/env python2

vpython_gen_store.py

import sys,string,re,math

from visual import *

f = frame(axis=(1,0,0))

bomb = faces(frame = f)

 2004 Ralph Noack 338

VPython Example: Page 2
def FacetedTriangle(obj,v1, v2, v3, color=None):

"""add a triangle to the object"""

try:

normal = norm(cross(v2-v1, v3-v1))

except:

normal = vector(0,0,0)

for v in (v1,v2,v3):

obj.append(pos=v, color=color, normal=normal)

 2004 Ralph Noack 339

VPython Example: Page 3
def ReadXYZ(file,n):

print "Reading xyz"

xyz=[0]*n

for i in xrange(n):

line=file.readline()

(x,y,z)=string.split(line)

tri = vector(float(x),float(y),float(z))

xyz[i]=tri

print "Done"

return xyz

 2004 Ralph Noack 340

VPython Example: Page 4
def ReadConnectivityFaces(file,nfaces,nnodes_face,xyz,obj):

print "Reading connectivity"

if nnodes_face != 3:

raise "nnodes_face != 3"

for i in xrange(nfaces):

line=file.readline()

fields=string.split(line)

i1=int(fields[0])-1

i2=int(fields[1])-1

i3=int(fields[2])-1

FacetedTriangle(obj,xyz[i1], xyz[i2], xyz[i3],

color=(1,0,0))

print "Done"

 2004 Ralph Noack 341

VPython Example: Page 5
file=open("gen_store.flex","r")

while 1:

line=file.readline()

if not line:

break

if line[0] == ":":

print line

if line[0:4] == ':xyz':

kw,nxyz=string.split(line)

xyz=ReadXYZ(file,int(nxyz))

if re.match(':connectivity_faces',line):

fields=string.split(line)

nfaces=int(fields[1])

nnodes_face=int(fields[2])

ReadConnectivityFaces(file,nfaces,nnodes_face,xyz,bomb)

file.close()

print "Done"

 2004 Ralph Noack 342

VPython Example: Page 6
dt=0.01

velocity=vector(-1,-1,0)

dth=dt*2.0*math.pi/10.0

while 1:

rate(30)

bomb.pos = bomb.pos + velocity*dt

rotates about current position

f.rotate(angle=dth)

 2004 Ralph Noack 343

PyOpenGL
• PyOpenGL is the Python binding to OpenGL and related

API’s
– Includes support for OpenGL, GLU, GLUT, GLE, WGL, and Togl

(Tk OpenGL widget)
– Available from http://pyopengl.sourceforge.net/
– Also available is OpenGL Context, a teaching and testing library

• Only minor differences between OpenGL and Python
bindings in PyOpenGL

• Requirements
– Python 2.2.x or greater
– OpenGL 1.1 and GLU (included with most Linux distributions)
– GLUT 3.7+ (included with most Linux distributions)
– Numeric Python (numpy) v22 (or greater if building from source)

 2004 Ralph Noack 344

What is OpenGL?
• OpenGL is a low level 3D graphics library

– Intended to be a software interface to the graphics hardware
• Current consumer oriented hardware is very fast and cheap

– Excellent performance for the price
– Does not include any commands for windowing tasks

• Other software must
– Create a window to draw in
– Handle user interactions via keyboard and pointer

– Programmer has complete control over generation and
update/redraw of the display

• Other graphics toolkits may setup view port, update loop, etc.
• OpenGL requires the programmer to integrate update with the user

interface

 2004 Ralph Noack 345

Installing PyOpenGL From Source
• Assume have already installed Numeric Python
• Extract source

tar xzvf PyOpenGL-2_0_0_44_tar.gz
cd PyOpenGL-2.0.0.44/

• edit config/linux.cfg
– Make sure include_dirs and library_dirs has path to X11 files.
– Redhat 7.3 need to add /usr/X11R6/{include,lib}
include_dirs=/usr/include:/usr/X11/include:/usr/X11R6/include
library_dirs=/usr/lib:/usr/X11/lib:/usr/X11R6/lib

• Build and install in home directory
python2 setup.py build
python2 setup.py install --home=${HOME}/local/Python

 2004 Ralph Noack 346

PyOpenGL Demo programs
• Installation includes lots of demo scripts

cd ~/local/Python/lib/python/OpenGL/Demo/

 2004 Ralph Noack 347

Advanced Capabilities
• There are MANY modules in the standard library that we

have not talked about
• MANY packages are available for Python that extend the

capability
– Other 2D and 3D graphics
– pyMPI: parallel programming using MPI
– Statistics
– Chemistry
– LOTS more

 2004 Ralph Noack 348

Conclusion
• Hope you have gained enough knowledge to start writing python

programs
• The additional details can be picked up as you begin to use it
• There are a LOT of modules that people have written and made

available
– A web search on python and most any topic will find something useful

• Call/email me if you have questions
• Good luck

	An Incremental Introduction to Python
	What is Python?
	Why use Python?
	Why Teach Python?
	Example Java vs Python
	About this Tutorial
	Where to get Python
	Python Resources
	Running Python
	Use python as a calculator
	Use python as a calculator
	Python has the usual set of math operators
	Command line editing
	Command line editing
	Variables
	Variables
	Variables
	Complex Numbers
	Complex Numbers
	Complex Numbers
	Strings
	Strings
	Long strings
	Long strings
	String concatenation
	Extracting substrings
	Extracting substrings
	Extracting substrings
	Extracting substrings
	Extracting substrings
	Python strings are immutable
	Changing into a string
	Formatting into a string
	Formatting Codes
	Formatting Codes
	Python Lists
	Python Lists
	Python Lists
	Python Lists are mutable
	Python Lists are mutable
	Pre-allocate a list
	Other functions that will operate on a list
	Other functions that will operate on a list
	Tuples
	Tuples
	Tuples
	Tuples
	Python Dictionaries
	Python Dictionaries
	Python Dictionaries
	Python Dictionaries
	Python Dictionaries
	Conditionals
	Conditionals
	Boolean Expressions
	Boolean Expressions
	Boolean Expressions
	Blocks of code
	Flow control
	if statement
	if statement
	if statement
	Colon Character indicates a new block
	Looping with while
	Looping with while
	Looping with while
	Break out of while loop
	Continue within while loop
	for loop
	for loop
	for loop
	Using Range() function with for loop
	Using Range() function with for loop
	Break and Continue with for loop
	Creating a script file
	Creating a script file
	Creating a script file
	Make the script file executable
	More on print
	More on print
	Functions
	Function Arguments
	Pass and the Simplest Function
	Functions and Docstrings
	Functions and Docstrings
	Calling a Function
	Create a Function
	Function Adder
	Function Adder
	Function Adder
	Function Adder
	Function Adder
	Function Adder
	Function Adder
	Function Adder
	Function Adder
	Function Adder
	Default Function Arguments
	Using Keyword Arguments
	Using Keyword Arguments
	More on Keyword Arguments
	Programming Models
	Programming Models
	Python Modules
	Python Modules
	Python Modules
	dir() function
	Python Modules
	Python Modules
	Python Modules
	Python Modules
	Python Modules
	More on dir() function
	Python Modules
	Look at Namespace
	Look at Namespace
	Look at Namespace
	Example of Namespace
	Run ExampleScope.py
	Example 2 of Namespace
	Run ExampleScope2.py
	Name Qualification
	Standard Python Modules
	sys Module
	string Module
	string Module
	string Module
	Input and Output using Files
	Input using Files
	Input using Files
	Input using Files
	Output using Files
	Copy a File
	Another useful module: urllib
	Example using urllib
	getpage.py
	copypageto.py
	Exception Handling
	Example Exception Handling
	Raising an Exception
	What is an Object?
	What is a Class?
	Object Oriented Programming Concepts
	Encapsulation
	Polymorphism
	Inheritance
	Composition
	Python Objects
	Python Classes
	Simplest Python Class
	Python Class Attributes
	Python Class Methods
	Calling Class Methods
	Calling Class Methods
	Python Class Attributes
	Python and Private Attributes
	Python and Private Attributes
	Python Class Attributes
	Object Constructor
	Object Constructor
	Class Inheritance
	Inheritance and Attribute Resolution
	Derived Classes Extend Base Classes
	Inheritance Example
	Inheritance Tree
	Override Inherited Methods
	Inheritance and Override Example
	Inheritance Tree
	Overloading Operators
	Common Methods for Numeric Objects
	Methods for Objects of Different Types
	Overloading Operators: Example 1
	Overloading Operators: Example 1
	Overloading Operators: Example 2, Page 1
	Overloading Operators: Example 2, Page 2
	Overloading Operators: Example 2
	Container Objects
	Container Objects: Example
	Container Objects: Example
	Creating a GUI
	GUI Toolkits
	General Comments on GUI Programming
	First GUI
	Tkinter Widgets
	Tkinter Widgets
	Tkinter Organizational Widgets
	Tkinter Widgets: Parent/Child Relationship
	Tkinter Widgets: Label
	Tkinter Widgets: Entry
	Tkinter Widgets: Button
	Tkinter Widgets: Button Callback
	Tkinter Widgets: Button Callback
	Tkinter Widgets: Button Callback
	Button Callback: OO approach
	Button Callback Using Inheritance
	Button Callback Using Inheritance
	Connecting Button with Entry
	Connecting Button with Entry Button: Page1
	Connecting Button with Entry Button: Page2
	re Module for Advanced String Handling
	re Module Functions
	re Module Functions
	Regular Expression Special Characters
	Regular Expression Special Characters
	Regular Expression Special Characters
	Regular Expression Characters Sets
	Regular Expression as Raw Strings
	Regular Expression Groups
	Reusing Regular Expression Groups
	Other re Module Functions
	Other re Module Functions
	Using Compiled Regular Expressions
	Using Compiled Regular Expressions
	Parallel Programming with Threads
	Why use Parallel Threads?
	All Threads Share Access to Process Memory
	Threads and the Python Interpreter
	Python Has Two Thread Modules
	What is executed in a Thread?
	Thread Module
	Thread Example 1
	Thread Example 2
	Thread Locking
	Minimize Time Holding a Lock
	Example: Threads and Race Condition; pg 1
	Example: Threads and Race Condition; pg 2
	Example: Threads and Race Condition; pg 1a
	Example: Threads and Race Condition; pg 2a
	Example: Threads and Race Condition; pg 2a
	Example: Using Mutex Locks; pg 1a
	Example: Using Mutex Locks; pg 2a
	Example: Using Mutex Locks; pg 2a
	Subclassing From Thread
	Subclassing From Thread: Example 2; pg 1
	Subclassing From Thread: Example 2; pg 2
	Subclassing From Thread: Example 2; pg 3
	Example: GUI and Threads
	Mixin Class for Background Timer
	Use a Python Class to Package the Data
	Button Callback Starts Threads
	Thread Work Function to Get Quote
	Thread Work Function to Get Quote
	Function to Create Popup to Display Quote
	Main Routine
	Reading/Writing Fortran Unformatted Files
	Reading/Writing Fortran Unformatted Files
	Python Read/Write Methods
	Struct Module
	Struct Module Format Character Codes
	More on Struct Module Format String
	Using Struct Module To Read PLOT3D Grid
	Changes to Determine Byteorder
	Read NGRID and Determine Byteorder
	OO Version; Page 1
	OO Version; Page 2
	OO Version; Page 3
	Read Grid Dimensions
	Read Grid Dimensions Method
	Read Grid Coordinates and IBLANK
	Use Record Size to Determine Word Size
	Read the Grid Coordinate Record
	Read Method
	Two-Dimensional Graphics and Plotting
	Drawing With Tkinter
	Drawing With Tkinter: Arc
	Drawing With Tkinter: Line
	Drawing With Tkinter: Rectangles
	Drawing With Tkinter: Polygon
	Example with Lines and Text; Page 1
	Example with Lines and Text; Page 2
	Example with Rectangle and Polygon
	Python Imaging Library (PIL)
	A Few Possible Uses of PIL
	Loading/Creating an Image Using PIL
	Loading an Image Using PIL
	Drawing Using PIL
	Drawing Using PIL: arc and pieslice
	Drawing Using PIL: arc and pieslice
	Drawing Using PIL: line
	Drawing Using PIL: line
	Drawing Using PIL: polygon
	Drawing Using PIL: line
	Combining Python With Other Languages
	Interfacing Python To Another Languages
	Example Extension Module
	Example Extension Module
	Wrapper Function Arguments
	Extract C Data Types From Arguments
	Call The C code
	Return Value as PyObject
	Build Method Table
	Module Initialization Function
	Compiling the Extension Module
	Using the Extension Module
	Extend Python with FORTRAN Using Pyfort
	Obtaining Numerical Python
	Installing Numerical Python
	Installing Pyfort
	Using Pyfort
	Pyfort Module File
	Pyfort Example: Fortran Routine
	Example Interface Specification
	Fortran Arguments declared intent(out)
	Example Using Pyfort
	Automated Tools to Extend Python
	SWIG
	SWIG Interface File
	Building Module
	Other Useful SWIG directives
	SWIG directives in C/C++ Header File
	Using P3Dlib as Python Module
	extract_edgesp3d.py: Page 1
	extract_edgesp3d.py: Page 2
	extract_edgesp3d.py: Page 3
	F2PY: Fortran to Python Interface Generator
	F2PY: Steps to Produce Module
	Installing F2PY
	Simple Example: FIB1.F
	Simple Example: FIB1.F
	F2PY Modes: Generate a Signature File
	F2PY Modes: Create module code
	F2PY Modes: Build module
	Python Access to Fortran Common Blocks
	F2PY Directives
	F2PY Directives
	F2PY Directives: Example FIB3.F
	F2PY Directives: Example FIB3.F
	F2PY Directives: Example FTYPE.F
	F2PY Directives: Example FTYPE.F
	VPython
	Obtaining and Installing VPython
	VPython Objects
	VPython Objects
	VPython Faces
	VPython Faces Example
	VPython Example
	VPython Example: Page 1
	VPython Example: Page 2
	VPython Example: Page 3
	VPython Example: Page 4
	VPython Example: Page 5
	VPython Example: Page 6
	PyOpenGL
	What is OpenGL?
	Installing PyOpenGL From Source
	PyOpenGL Demo programs
	Advanced Capabilities
	Conclusion

