
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating-System Structures

2.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 Operating System Debugging

 Operating System Generation

 System Boot

2.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the services an operating system provides to users,

processes, and other systems

 To discuss the various ways of structuring an operating system

 To explain how operating systems are installed and customized and

how they boot

2.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services

 Operating systems provide an environment for execution of programs and

services to programs and users

 One set of operating-system services provides functions that are helpful to the

user:

 User interface - Almost all operating systems have a user interface (UI).

 Varies between Command-Line (CLI), Graphics User Interface (GUI),

Batch

 Program execution - The system must be able to load a program into

memory and to run that program, end execution, either normally or

abnormally (indicating error)

 I/O operations - A running program may require I/O, which may involve a

file or an I/O device

 File-system manipulation - The file system is of particular interest.

Programs need to read and write files and directories, create and delete

them, search them, list file Information, permission management.

2.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services (Cont.)

 Communications – Processes may exchange information, on the

same computer or between computers over a network

 Communications may be via shared memory or through

message passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible

errors

 May occur in the CPU and memory hardware, in I/O devices, in

user program

 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services (Cont.)

 Ensuring the efficient operation of the system itself via resource sharing

 Resource allocation
When multiple users or multiple jobs running concurrently, resources must
be allocated to each of them

 CPU cycles (resource #1)

 Main memory

 File storage

 Printers, scanners, camera, etc.

 Accounting
Keep track of which users use how much and what kinds of computer
resources

 CPU time user is notified if his processes overuse CPU

 Disks usage user gets notification if his files fill network disks

2.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services (Cont.)

 Protection and security
Owners of information stored in a multiuser or networked computer system may
want to control use of that information, concurrent processes should not
interfere with each other

 Protection
all access to system resources is controlled – OS must provide ownership,
permissions, and authentication control engines

 Security
Protect system from outsiders (and the users themselves) requires

 User authentication

 Defend I/O devices from invalid access attempts

 If a system is to be protected and secure, precautions must be
instituted throughout it.

 A chain is only as strong as its weakest link.

2.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A View of Operating System Services

2.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A View of Operating System Services

GUI – Graphical User Interface to File System
Windows 7

2.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A View of Operating System Services

GUI – Graphical User Interface to File System
Android (Jelly Bean 4.2)

2.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A View of Operating System Services

Batch File Interface with the Operating System (windows)

@ECHO OFF
:: Windows NT 4 / 2000 only
IF NOT "%OS%"=="Windows_NT" 1 GOTO Syntax

:: Keep variables local
SETLOCAL ENABLEEXTENSIONS

:: Parameter check
ECHO.%1 | FIND "?" >NUL
IF NOT ERRORLEVEL 1 GOTO Syntax
:: Extract drive letter
SET Drive=%1
IF DEFINED Drive SET Drive=%Drive:~0,1%
CALL :Drive %Drive%:

:: FAT
SET FS=FAT
:: Test "last accessed"time, if 00:00 for every file we may presume FAT
FOR /F "TOKENS=2,3* DELIMS= " %%A IN ('DIR/A/TA/P/-P/W/-W %Drive% 2ˆ>NUL ˆ| FIND ":" ˆ| FIND "-"') DO IF NOT
"%%A"=="00:00" SET FS=
DIR %Drive% >NUL 2>&1
IF ERRORLEVEL 1 GOTO NotReady
IF NOT "%FS%"=="" GOTO Display

:: NTFS
SET FS=NTFS
:: NTFS check needs a temporary file name
SET TEMPFILE=
FOR %%A IN (0 1 2 3 4 5 6 7 8 9) DO FOR %%B IN (0 1 2 3 4 5 6 7 8 9) DO CALL :TempFile %%A%%B %1
IF "%TEMPFILE%"=="" GOTO NoTemp
:: Test alternate data streams, a feature unique for NTFS
(ECHO %~nx0 > %TEMPFILE%:NTFSTEST) >NUL 2>&1
IF NOT EXIST %TEMPFILE% SET FS=unknown
IF EXIST %TEMPFILE% DEL %TEMPFILE%

2.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

UNIX Batch File Example (BASH)

hname=`hostname`

echo "Welcome on $hname."

echo -e "Kernel Details: " `uname -smr`

echo -e "`bash --version`"

echo -ne "Uptime: "; uptime

echo -ne "Server time : "; date

lastlog | grep "root" | awk {'print "Last login from : "$3

print "Last Login Date & Time: ",$4,$5,$6,$7,$8,$9;}‘

DISK_SIZE_BYTES=`df -PT -B 1 | awk '{if ($7 == "/") print $3}'`

TEMP_FILE=/tmp/largest_files.tmp

printf "\n%-18s %-10s %-15s %-25s %s \n\n" "[SIZE (BYTES)]" "[% OF DISK]" \

"[OWNER]" "[LAST MODIFIED ON]" "[FILE]"

SUM=0

for FILE in `find $SEARCH_DIR -type f -exec du {} \; | sort -rn | head -$FILES_COUNT | awk '{print $2}'`

do

FILE_SIZE_BYTES=`stat --print %s $FILE`

OWNER=`stat --printf %U $FILE`

LAST_MODIFIED_ON=`stat --printf %y $FILE | cut -c 1-19`

FILE_SIZE_BYTES1=`expr $FILE_SIZE_BYTES * 100`

PERCENTAGE=`expr $FILE_SIZE_BYTES1 / $DISK_SIZE_BYTES`%

printf "\n%-18s %-12s %-14s %-25s %s" \

"$FILE_SIZE_BYTES" "$PERCENTAGE" "$OWNER" "$LAST_MODIFIED_ON" "$FILE"

SUM=$(($SUM+$FILE_SIZE_BYTES))

done

2.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A View of Operating System Services

CLI – Command Line Interface (Windows)

Exercise: Write find.py in Python (20 lines!) [link to solution]

http://tinyurl.com/samyz/python/software/find.txt

2.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A View of Operating System Services

CLI – Command Line Interface (Windows)

2.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux (guest OS) on top of Windows 7 (host OS)

Exactly the same find.py in Linux (OpenSuse)

2.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Android Command Line Console (Galaxy Note 2)

Can be installed on Android device and used to practice shell

2.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Operating System Interface - CLI

 Command Line Interface (CLI) or command interpreter allows direct

command entry

 Sometimes implemented in kernel (shell internal commands)

 Sometimes by systems programs (/usr/bin)

 Sometimes multiple flavors implemented – shells

 Primarily fetches a command from user and passes it to the OS

kernel – immediately or through intermediate agents

 Sometimes commands built-in, sometimes just names of

programs

– If the latter, adding new features doesn’t require shell

modification

2.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause various

actions (provide information, options, execute function, open directory

(known as a folder)

 Invented at Xerox PARC (later copied by Steve Jobs to Macintosh,

and Bill Gates to Windows)

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath

and shells available

 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

2.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Mac OS X GUI

2.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

 Three most common APIs are

 Win32 API for Windows

 POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X)

 Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are generic)

2.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Linux cp system program

Click here to see how the cp system program
Was implemented

http://www.samyzaf.com/braude/OS/cp.txt
http://www.samyzaf.com/braude/OS/cp.txt
http://www.samyzaf.com/braude/OS/cp.txt

2.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example: Simple unsafe version of cp

#include <stdio.h>
#include <fcntl.h>
#include <syscall.h>
#define PERMS 0666 /* rwx for owner, group, others */
#define BUFSIZE 4096

void error(char *, ...) ;

/* copyfile.c: copy f1 to f2 */
main(int argc, char* argv[])
{

int f1, f2, n;
char buf[BUFSIZE];

if (argc != 3)
error("Usage: copyfile file1 file2");

if ((f1 = open(argv[1], O_RDONLY, 0)) == -1)
error("copyfile: can't open %s", argv[1]);

if ((f2 = creat(argv[2], PERMS)) == -1)
error("copyfile: can't create %s, mode %03o", argv[2], PERMS);

while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)

error("copyfile: write error on file %s", argv[2]) ;
return 0;

}

2.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of System Calls 2 (Linux)
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <dirent.h>

int open(const char *pathname, int flags) ;
int open(const char *pathname, int flags, mode_t mode) ;
int close(int fd) ;
int creat(const char *pathname, mode_t mode) ;
ssize_t read(int fd, void* buf, size_t noct) ;
ssize_t write(int fd, const void* buf, size_t noct) ;
off_t lseek(int fd, off_t offset, int ref);
int stat(const char* path, struct stat* buf);
DIR* opendir(const char* pathname);
struct dirent* readdir(DIR* dp);
int closedir(DIR* dp);

• fd = file descriptor, noct = number of chars, dp = directory pointer, mode=permissions
• fopen() is not a system call! It is a wrapper on open() (or CreateFile())
* There are hundreds of system calls in Linux!

2.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shorthands (Linux)

• fd = file descriptor
• noct = number of chars
• dp = directory pointer
• mode = permission bit string
• fopen() is not a system call!!!

• It is a wrapper (API) on open() in Linux
• or CreateFile() in Windows

• There are hundreds of system calls in Linux!
• Note:

//"linux/types.h"

typedef __kernel_size_t size_t;
typedef __kernel_ssize_t ssize_t;

//"asm/posix_types.h"
typedef unsigned int __kernel_size_t;
typedef int __kernel_ssize_t;

ssize_t is used for functions whose return value could either be a valid
size, or a negative value to indicate an error

http://stackoverflow.com/questions/15739490/should-use-size-t-or-ssize-t

2.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Calls for Process Management

#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>

/* Process Management */

pid_t fork();
int execl(const char * path, const char * arg0, ..., NULL);
int execv(const char * path, char * argv[]);
int execlp(const char * filename, const char * arg0, ..., NULL);
int execvp(const char * filename, char * argv[]);
pid_t wait(int* pstatus);
pid_t waitpid(pid_t pid, int* pstatus, int opt);
pid_t getpid();
pid_t getppid();
void exit(int* status);

2.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process System Calls

pid_t fork();
Creating a child process

int execl(const char * path, const char * arg0, ..., NULL);
int execlp(const char * filename, const char * arg0, ..., NULL);

Variadic argument list
The p stands for the shell PATH (so in the second form
you do not have to supply a full path to the program)

int execv(const char * path, char * argv[]);
int execvp(const char * filename, char * argv[]);

Arguments are passed by a single vector argv[]
p stands for PATH

void exit(int* status);
Terminate process

2.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of System Calls (Linux)

• In the execlp and execvp calls the executable file
specified by the "filename" parameter is searched in the
directories listed in the PATH environment variable

• All command line system programs are executed by the
exec* system calls

• For example, “ls –l” is run via:
char *argv[] = {"ls", "-l", "/usr/src", (char*)NULL};
execv("/usr/bin/ls", argv) ...

2.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Python API to System Calls

• Python provides a higher layer API for running system
programs via the os and subprocess module:

Windows:
os.system('c:/Windows/System32/mspaint.exe d:\\os.jpg')

argv = ['mspain.exe', 'd:/os.jpg']
os.execv('c:/windows/system32/mspaint.exe', argv)

Linux:
os.system('/usr/bin/nano ~/proj5/apples.c')

argv = ['ls', '-l', '/usr/src']
os.execv('/usr/bin/ls', argv)
os.execl('/usr/bin/ls', 'ls', '-l', '/usr/src')
can also be done like this:
os.execl('/usr/bin/ls', *argv)

2.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call Numbers (Linux)
#include <syscall.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>

int main(void) {
long ID1, ID2;

/* direct system call */
/* SYS_getpid (defined as syscall no. 20) */

ID1 = syscall(20);
printf ("syscall(SYS_getpid)=%ld\n", ID1);

/* "libc" wraps syscall(20) as: getpid() */

ID2 = getpid();
printf ("getpid()=%ld\n", ID2);
return(0);

}

/* Internally, syscall() is invoked by software interrupt 0x80 to transfer control to
the kernel. System call table is defined in Linux kernel source file
arch/i386/kernel/entry.S */

2.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux System Calls List

 Full lists of system calls can be viewed in the following links:

 http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html

 http://man7.org/linux/man-pages/man2/syscalls.2.html

 http://asm.sourceforge.net/syscall.html

 Microsoft Windows does not have an officially declared boundary

between API and system calls (try to Google for Windows system

calls, and see what this means)

 The official Microsoft Windows term is Win32 API – a set of

elementary interface functions to the operating system core (which

is not documented and its source code is never released)

http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html
http://man7.org/linux/man-pages/man2/syscalls.2.html
http://asm.sourceforge.net/syscall.html

2.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

MS Windows CreateFile System Call
#include <windows.h>
#include <tchar.h>
#include <stdio.h>
#include <strsafe.h>

/* prototype */
HANDLE WINAPI CreateFile(

In LPCTSTR lpFileName,
In DWORD dwDesiredAccess,
In DWORD dwShareMode,
_In_opt_ LPSECURITY_ATTRIBUTES lpSecurityAttributes,
In DWORD dwCreationDisposition,
In DWORD dwFlagsAndAttributes,
_In_opt_ HANDLE hTemplateFile

);

Example:
hFile = CreateFile(argv[1], // name of the write

GENERIC_WRITE, // open for writing
0, // do not share
NULL, // default security
CREATE_NEW, // create new file only
FILE_ATTRIBUTE_NORMAL, // normal file
NULL); // no attr. template

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx

2.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Microsoft CreateProcess

 Windows combines fork and exec to a single

system call:
CreateProcess(10 arguments)

 There is no Win32 API to fork a process

 No parent child relationship !

 There is no getppid API in WIndows

 Note – special privileges are required to create a new

process in Windows

2.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

MS Windows CreateProcess System Call
#include <windows.h>
#include <stdio.h>

int main(VOID) // Parent process
{

STARTUPINFO si;
PROCESS_INFORMATION pi; /* like a PCB in Linux */
ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory(&pi, sizeof(pi));
// Start the child process.
if(!CreateProcess(NULL, // No module name (use command line).

"C:\\WINDOWS\\system32\\mspaint.exe", // Command line: // Run mspaint.exe (child process)
NULL, // Process handle not inheritable.
NULL, // Thread handle not inheritable.
FALSE, // Set handle inheritance to FALSE.
0, // No creation flags.
NULL, // Use parent's environment block.
NULL, // Use parent's starting directory.
&si, // Pointer to STARTUPINFO structure.
&pi) // Pointer to PROCESS_INFORMATION structure.

)
{

printf("CreateProcess failed (%d).\n", GetLastError());
return -1;

}

// Wait until child process exits ------------------------- Software Interrupt …
WaitForSingleObject(pi.hProcess, INFINITE);
// Close process and thread handles.
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

}

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx

2.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

MS Windows CreateProcess System Call

The program easily compiles with cl

2.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Platform Independent API (Python)

The following code works on Windows, Linux, Macintosh, Android

File management:

import os
f = open("c:/braude/os/db.csv") # Windows file
f = open("/home/users/samyz/braude/os/db.csv") # Unix file: same API!
line = f.next() # Works the same in:
print line # windows, unix,

macintosh, android
f.close()
os.listdir("c:/braude/os/db.csv")
os.listdir("/home/users/samyz/braude")
os.mkdir("c:/FSGEN/dir_52/dir_89")
os.rmdir("c:/FSGEN/dir_52")
os.rmdir("/usr/home/samyz/FSGEN/dir_52")

2.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Platform Independent API (Python)

Process management:
The following code works on Windows, Linux, and Macintosh

import subprocess

Starting the MS Windows paint program

p1 = subprocess.call("c:/windows/system32/mspaint.exe")

Starting the Unix X calculator

p2 = subprocess.call("/usr/bin/X11/xcalc")

Starting the MS Windows paint program in the background

p1 = subprocess.Popen("c:/windows/system32/mspaint.exe")

p1.pid

p1.communicate(input="Hello")

p3.send_signal(10)

p1.terminate()

2.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Python/Linux API

Linux Process management:
scan the list of all Linux system programs
from subprocess import Popen, PIPE
p = Popen(['ls', '-l', '/usr/bin'], stdout=PIPE)
total = 0
for line in p.stdout:

fields = line.strip().split()
if not len(fields) == 9:

continue
perms, nlinks, user, group, size, month, day, time, file = fields
size = int(size)
#print "System program file=%s, size=%d" % (file, size)
print perms
total += int(size)

print "System programs total size (mega bytes) = %.2f MB", float(total)/(2**20)
p.terminate()

2.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to these

numbers

 The system call interface invokes intended system call in OS kernel

and returns status of the system call and any return values

 The caller need know nothing about how the system call is

implemented

 Just needs to obey API and understand what OS will do as a

result call

 Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built into

libraries included with compiler)

2.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

API – System Call – OS Relationship

2.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Standard C Library Example

 Below is a C program invoking printf() standard library function

 printf() is not a system call! It is an API to the write() system call

2.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call Parameter Passing

 Often, more information is required than simply identity of desired
system call

 Exact type and amount of information vary according to OS and
call

 Three general methods used to pass parameters to the OS

 Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

 Block and stack methods do not limit the number or length of
parameters being passed

2.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Parameter Passing via Table

2.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Types of System Calls

 Process control

 end, abort

 load, execute

 create process, terminate process

 get process attributes, set process attributes

 wait for time

 wait event, signal event

 allocate and free memory

 File management

 create file, delete file

 open, close file

 read, write, reposition

 get and set file attributes

2.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Types of System Calls (Cont.)

 Device management

 request device, release device (e.g., diskonkey, camera, earphones)

 read, write, reposition

 get device attributes, set device attributes

 logically attach or detach devices

 Information maintenance

 get time or date, set time or date

 get system data, set system data

 get and set process, file, or device attributes

 Communications

 create, open, close communication connections points (ports)

 send, receive messages thru connection points (sockets)

2.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of Windows and

Unix System Calls

ioctl - device-specific input/output operations
shmget – shared memory get

2.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Famous Onion Diagram

KERNEL
syscalls:
open() fork() read()
close() pipe() seek()
write() getpid()

wait() waitpid()

API

System Programs

APPS/GUI

2.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Parent process create children processes, which, in turn create other

processes, forming a tree of processes

 A process is identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent can wait until children terminate

2.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont.)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’

memory space with a new program

2.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

2.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

C Program Forking Separate Process
#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

int main()

{

pid_t pid;

pid = fork(); /* fork a child process */

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

return 1;

} else if (pid == 0) { /* child process ok! */

execlp("/usr/bin/wc", "wc", "-l", "oliver_twist.txt", NULL);

} else { /* parent process */

wait(NULL); /* parent will wait for the child */

printf ("Child Completed\n");

}

return 0;

}

2.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

fork() and exec()
Stage 1: Call fork()

Child process is an identical copy of the parent process

This includes the PCB fields (open files, priority, …)

The two PCB’s are identical except for the pid field!

The child process gets its identity from a new pid.

Unix fork() resembles genetic cloning.

At this stage, both parent and child share the same
data,

Heap, stack, open files etc …, and therefore can have

perfect cooperation.

However, in the two previous examples we decided to

Replace the child with a completely new process and lose

all shared data (nothing is left after execlp).

Stage 2: Call execlp() with program “/usr/bin/wc”

Child process text section is replaced with

the machine code of the program “/usr/bin/wc”.

The data, heap, and stack (and PCB field) are reset and

No shared data is left anymore.

The only link is the parent has the child pid and can

Wait for him to complete and collect its exit code

fork()

M
E
M

O
R

Y

/usr/bin/wc

Parent

Child

pid=582

pid=583

2.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Exercise: what will be printed here? (C++)

#include <unistd.h>

#include <iostream>

using namespace std;

int main()

{

cout << "0. I am process " << getpid() << endl;

fork();

cout << "1. I am process " << getpid() << endl;

fork();

cout << "2. I am process " << getpid() << endl;

}

// How many processes are involved here ???

2.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Exercise: what will be printed here? (C++)

#include <unistd.h>

#include <iostream>

using namespace std;

int main()

{

cout << "0. I am process " << getpid() << endl;

fork();

cout << "1. I am process " << getpid() << endl;

fork();

cout << "2. I am process " << getpid() << endl;

fork();

cout << "3. I am process " << getpid() << endl;

}

// How many processes are involved here ???

2.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Exercise: who is my parent ?

#include <iostream>

using namespace std;

#include <sys/types.h>

#include <unistd.h>

int main(void)

{

cout << "My process id is: " << getpid() << endl ;

cout << "My parent process id is: " << getppid() << endl ;

cout << "I am running from a Linux command line" << endl ;

cout << "Please find the name of my parent?" << endl ;

return 0;

}

2.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A Tree of Processes on Solaris (SUN)

2.56 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows 7 – Process Table

2.57 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

 Process last statement asks the operating system to delete it

(exit)

 Output data from child to parent (via wait)

 Process’ resources are de-allocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

Some operating systems do not allow child to continue if its

parent terminates

– All children terminated - cascading termination

2.58 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inter-process Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need inter-process communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

2.59 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications Models

2.60 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Unix pipe() system call

 pipe() is a system call which enables IPC

IPC = inter-process communication

 It opens a pipe object, which is a buffer in main memory that is treated as

a "virtual file“ (buffer is owned by the Operating System!)

 The pipe can be used by the creating process, as well as all its child

processes - for reading and writing.

 One process can write to this "virtual file" (pipe) and another process can

read from it

 Blocking: If a process tries to read before something is written to the pipe,

the process is suspended until something is written

 The pipe system call assigns two available positions in the process's

open file table and allocates them for the read and write ends of the pipe

Write SideRead Side

2.61 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Reasons to use buffering inside the kernel

 Sharing

 Shared memory between two processed

 Caching

 Solve speed differences

 Slow/Fast Writer

 Slow/Fast Reader

 Solve user/kernel permission problems

 Only the OS controls who can share pipe memory

Write SideRead Side

2.62 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example: pipe() system call

// Simple Example
// Create a pipe with two ends for read and write
// If successful, pip[2] will be assigned two
// file descriptors

#include <unistd.h>
int fd[2];
int result;
result = pipe(fd);
if (result == -1) {

perror("pipe failed!") ;
exit(1) ;

}

write(fd[1], "Hi Mom!", 7) ;

// read from the pipe
char instring[20];
read(fd[0], instring, 7);

2.63 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Unix fork() and pipe() system calls

// Simple Example: no closing of pipe
#include <unistd.h>

int main() {
int pid, fd[2];
char instring[20];

pipe(fd);

pid = fork();
if (pid == 0) {

// child: sends message to parent
// send 7 characters in the string, including end-of-string
write(fd[1], "Hi Mom!", 7);

} else {
// parent: receives message from child
// read from the pipe
read(fd[0], instring, 7);

}
}

2.64 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Python fork() and pipe(): High Level API

import os

rd, wd = os.pipe()

os.write(wd, ‘Hello')

print os.read(rd, 5) # ‘Hello' is printed.

os.close(rd)
os.close(wd)

2.65 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Python fork() and pipe(): High level API

import os

rd, wd = os.pipe()
pid = os.fork() # creating a child process ! Unix only

if pid:
parent process
os.write(wd, ‘Hello') # Send 'Hello' to the child
os.close(wd)
os.waitpid(pid, 0)

else:
child process
print os.read(rd, 4) # 'Hello' is printed by the child

Note:
• Use the subprocess module to make something that works In both platforms
• What will happen if the child tries to read more bytes?

2.66 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs

 System programs provide a convenient environment for program

development and execution. They can be divided into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users’ view of the operation system is defined by system

programs, not the actual system calls

2.67 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File Manipulations in Python (1)

import os

Get current directory
os.getcwd()
os.getcwdu() #unicode version (hebrew)

Change current directory

os.chdir("c:/workspace")

list directory

os.listdir("c:/workspace")

Create a new directory

os.mkdir("c:/workspace/newdir")

Recursively create directory at any depth

os.makedirs("c:/workspace/dir1/dir2/dir3")

2.68 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File Manipulations in Python (2)

import os

Rename file name
os.rename(file1, file2)

#remove file
os.remove ("c:/workspace/file.txt")

#remove empty directory
os.rmdir ("c:/workspace/newdir")

2.69 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

os.stat(file)

os.stat("c:/workspace/server.py”)
 nt.stat_result(st_mode=33206, st_ino=0L, st_dev=0,

st_nlink=0, st_uid=0, st_gid=0, st_size=489L,
st_atime=1367180347L, st_mtime=1367180347L,
st_ctime=1367171683L)

st_mode - protection bits,
st_ino - inode number,
st_dev - device,
st_nlink - number of hard links,
st_uid - user id of owner,
st_gid - group id of owner,
st_size - size of file, in bytes,
st_atime - time of most recent access,
st_mtime - time of most recent content modification,
st_ctime - platform dependent time of most

recent metadata change on Unix,
or the time of creation on Windows

2.72 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs

 Provide a convenient environment for program development and
execution

 Some of them are simply user interfaces to system calls

 Others are considerably more complex

 File management
Create, delete, copy, rename, print, dump, list, and generally
manipulate files and directories

 Status information

 Some ask the system for info - date, time, amount of available
memory, disk space, number of users

 Others provide detailed performance, logging, and debugging
information

 Typically, these programs format and print the output to the
terminal or other output devices

 Some systems implement a registry - used to store and retrieve
configuration information

2.73 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs (Cont.)

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform
transformations of the text

 Programming-language support
Compilers, assemblers, debuggers and interpreters sometimes
provided

 Program loading and execution
Absolute loaders, re-locatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and machine language

 Communications
Provide the mechanism for creating virtual connections among
processes, users, and computer systems

 Allow users to send messages to one another’s screens, browse
web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

2.74 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Design

and Implementation

 NOT COVERED IN THIS COURSE

