
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

BASIC COMPUTER

ORGANIZATION

3.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Topics

 CPU Structure

 Registers

 Memory Hierarchy (L1/L2/L3/RAM)

 Machine Language

 Assembly Language

 Running Process

3.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

CPU – Central Processing Unit
 Roughly on 1 cm2

 500 to 1000 pins (input/output/control and power)

 Recent CPU’s have 4.5 billion transistors! (on 1 cm2 !)

 L1/L2/L3 Cache size ~ 256K/1MB/6MB (L1/L2 inside CPU)

 RAM ~ 4GB to 128GB (out of CPU)

 Pins connected to buses that travel across the system

board to other devices (disk controllers, graphic cards, …)

 Registers: special memory units inside the chip with

fastest access time.

Types: 16bit, 32bit, 64bit registers

Number: 16 to 128 registers on chip

 Important Registers:

 Program counter (PC): holds a pointer to current command in

the running program (in RAM)

 Instruction Register (IR): holds the currently running instruction

 Accumulator

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

http://en.wikipedia.org/wiki/Processor_register
http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

3.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

CPU – Central Processing Unit
 Machine Code:

 First loaded to RAM and then fetched to CPU CACHE (by

pages, not all program!)

 Machine instruction length is usually 16bit, 32bit, and even up to

128bit

 At each step an instruction is loaded to the Instruction Register

(IR), decoded and executed

 ALU – Arithmetic Logic Unit:

 Performs all the mathematical calculations of the CPU

 The ALU can add, subtract, multiply, divide, and perform a host

of other calculations on binary numbers

 Control Unit:

 this component is responsible for directing the flow of

instructions and data within the CPU

 The Control Unit is actually built of many selection circuits such

as decoders and multiplexors

 In the diagram above, the Decoder and the Multiplexor compose

the Control Unit

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

3.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

CPU

Monitor connector

DISK

RAM

network/sound/modem/tv/flash cards

Graphic Card

Computer System BUSES
 The information highway for the CPU

 Buses are bundles of bits that carry data

between components

 The three most important buses are:

 Address Bus (32-64 bit)
Used to specify a physical address. The processor or

DMA-enabled device needs to read or write to a memory

location, it specifies that memory location on the address

bus (the value to be read or written is sent on the data

bus). The width of the address bus determines the amount

of memory a system can address. For example, system

with a 32-bit address bus can address 2^32 (4 GB) bytes.

 Data Bus (8-64 bits)
allows data flow in both directions

 Control Bus
carries commands from the CPU and returns status

signals from devices. Example: if the data is being read or

written to the device the appropriate line (read or write)

will be active (0/1 bit).

http://testbench.in/introduction_to_pci_express.html

http://computer.howstuffworks.com/graphics-card1.htm
http://testbench.in/introduction_to_pci_express.html

3.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

CPU

DISK

RAM

Graphic Card

Read/Write BUS Control
 To send or receive data, a device must acquire

control of the bus from the CPU

 It may wait on a queue, and when the cpu grants

control proceeds as follows:

 To send data x to a device y it needs to

 Put x on data bus

 Put an address on address bus

 Send a write signal thru control bus

 All devices are listening but only the targeted device

will copy the data and send a received signal after

read (thru the control bus)

www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt

Control

Address

Data

Hard disks CD-ROM Network Display CPU Memory

network/sound/modem/tv/flash cards

http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt
http://www.cs.wustl.edu/~fredk/Courses/cse422/sp04/Lectures/io.ppt

3.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

DMA – Direct Memory Access
 The CPU is too expensive to be engaged with slow

I/O transfers:

 A typical CPU operates at several GHz (i.e., several

10^9 instructions per second)

 A typical hard disk has a rotational speed of 7200

revolutions per minute for a half-track rotation time of

4 ms

 This is 4 million times slower than the processor!

 Instead the CPU initiates a transfer with the DMA,

does other operations while the transfer is in

progress, and receives an interrupt from the DMA

controller when the operation is done

 So in effect, the DMA is a mini-controller that works

for the CPU and does I/O transfer jobs for it

 Some systems contain several DMA’s

 DMA is also used for “memory to memory” copying in

multi-core processors

 Hardware systems such as disk drives, graphic

network and sound cards use the DMA for passing

data around

http://support.novell.com/techcenter/articles/ana19950501.html

http://en.wikipedia.org/wiki/Interrupt
http://support.novell.com/techcenter/articles/ana19950501.html
http://support.novell.com/techcenter/articles/ana19950501.html
http://support.novell.com/techcenter/articles/ana19950501.html

3.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

DMA – Direct Memory Access (1)
 The CPU programs the DMA controller by writing to its registers the addresses and

operation codes (what to transfer and to where?)

 It also issues a command to the disk controller telling it to read data from the disk into its

internal buffer and verify the checksum

 When valid data are in the disk controller’s buffer, DMA can begin

 The DMA controller initiates the transfer by issuing a read request over the bus to the

disk controller

 The disk controller does not know or care whether it came from the CPU or from a DMA

controller

http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html

http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html

3.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

DMA – Direct Memory Access (2)

http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html

 The memory address to write to is on the address bus, so when the disk controller

fetches the next word from its internal buffer, it knows where to write it

 The write to memory is another data bus cycle

 When the write is complete, the disk controller sends an acknowledgement signal to the

DMA over the control bus

 The DMA controller then increments the memory address to use and decrements the

byte count - this goes on until the byte count reaches 0

 The DMA controller interrupts the CPU to let it know that the transfer is now complete

 When the operating system resumes, it does not have to copy the disk block to memory;

it is already there

http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html
http://lovingod.host.sk/tanenbaum/INPUT-OUTPUT.html

3.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Process in Memory

3.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

How Program looks in Disk or Memory
011001111100010101010011001000100111111010000110100000000010011001101000100110111111001100101010
111000110100110101010100011010000111100010011101000111000101100111101110001101101100010000101110
010010010100001000010111010001100011110101111111000101011010010010110100000101000010101100011001
101001111000001101101000111011011110111010101110000110011100100011000100010111110111011001000111
111111001010001110101100000010000000111000100101010110111110111101111101001010110101111100111000
000010011110100111001010111111111100111010111100011101110111111110011110110100011010101010110010
111111011011010010000000100001001100011001111100000100110011111111111111100010011000110101101011
101110111100010110111111011111001011111110110000010001111110011010001111101001110001101100001110
010111000110101110100011100000011011001111000100010110100001101010000001101010010100111111001011
110111011110011000010100010011111011011011001111001110010011011101111011000011110110111000111111
011101011010100101110101000111000110100100100111100001111001000100110100000100010111111011111001
101110001100110111011011111111000100100001011101001011011111000011000101001011010001101101000011
010011000110011100010100101001110010000010001010000110111000111111011011101001000101111000010000
101101111011010110010010001010001111111101101100000100000101111100101100010100011111111011001001
110100001010100011010100111000111011001000010010001010110111000011111010101000110100010001000001
111011100001011000110100111111100110101001110100100001111011011110110000010011111010001011110011
001011111010110001001110111101101010011100011101001101101111000101110010100001111111111111011010
100100010111011001001000011110010001000111100000111110111111100110011000011101011011011110100011
101100010010100100100100011111010010100111101010001011010110111100000111110001111100110100111011
110000000001010101011001110111111000100110010001000010000110010100000010001001011011001011110111
110001000011101011100010010000110111011101011110101111100001000011010100110111000111010000001100
000000011001001100110101111101001101100000100010100101011000101001001001010111000010011010101010
001011101100111111100001101010101001111111000110010000010101000111111111000001011110100110011110
100000011001010010000000100101011111110011010101101101100011110001100000100010001010101111000011
110110011101010011011111010110111111000011100010100110001111000010100100010100110010100100011011
111110011111101110011000011100001111001110101010101011000100010000110101011110110101101111000011
110011000010100000110011011000011100101001100001001110111100001011001110111000001010011101111110
011010111001111001001001000001011110110011111111100101100001110100001011010011000011001110111010
101011011011000100000110011011100101100111101000000100111001110010001010001001110101100110010011
101011001111100101011000000011011100010100100111101111100110110011101111100011101010011010011011
101101001000110111111101001100001001011100010000111110111000110110011110011111100000010110111111

This is a two-dimensional view, but in memory or disk it is really 1-dimensional!

RAM is really a 1-dimensiona array!
So you should think of RAM as a very
large C array:

 byte* memory[4294967296]

where 4GB = 4294967296 (but could be larger!)

3.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example

double PI = 3.14159 // data section
unsigned int u = 27 // data section
char * str = "No changes allowed"; // data section

int foo()
{
 char *pBuffer; // nothing allocated yet (excluding the pointer itself,
 // which is allocated here on the stack).
 bool b = true; // Allocated on the stack
 if(b)
 {
 long int x, y, z ; // Create 3 longs on the stack! (local vars)
 char buffer[500]; // Create 500 bytes on the stack! (local var)
 pBuffer = new char[500]; // Create 500 bytes on the heap! (array of char objects)

 } // buffer is deallocated here, pBuffer is not!
} // oops there's a memory leak, should have called:
 // delete[] pBuffer;
 // new operator always uses the heap ! Why? Think of WinWord.exe reading a doc …

3.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

High code Assembly Machine Code

http://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html

http://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html
http://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html
http://www.cise.ufl.edu/~mssz/CompOrg/CDA-lang.html

3.14 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

C code Assembly Machine Code

C code: c = a+b a, b, c variables in C language

Assembly (MIPS): add $8, $17, $18 Add the contents of CPU registers
 $17 and $18 and put the result in
 register $8

Machine Code: 00000010001100100100000000100000

1. The C language has no limit on number of variables but the MIPS
Architecture has only 32 registers available

2. So we may have 700 C variables but the assembler will have to manage
all of them with only 32 registers!

3. Every MIPS machine instruction has 32 bits length

Decoder:
000000 10001 10010 01000 00000 100000
add reg17 reg18 reg8 shamt funct

3.15 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Machine Code Structure (MIPS R-Type)

000000 10001 10010 01000 00000 100000 32 bits instruction
OPCODE RD RS RT SHAMT FUNCT meaning

OPCODE Basic Operation Code 6 bits
RS First Source Register (operand) 5 bits
RT Second Source Register (operand) 5 bits
RD Destination Register (operand) 5 bits
SHAMT Shift Amount 5 bits
FUNCT Specific Functionality 6 bits

- MIPS has 32 registers, so 5 bits are enough to address them all
- FUNCT is used to select a specific variant of the operation code
- OPCODE has exactly 6 bits, which means that we can have at most

63 operations in our language ... could be risky ...?
- MIPS has more instruction types different from the above!

3.16 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Machine Code Structure (MIPS R-Type)

http://en.wikipedia.org/wiki/File:Mips32_addi.svg

R1 = R2 + Immediate_Value

http://en.wikipedia.org/wiki/File:Mips32_addi.svg
http://en.wikipedia.org/wiki/File:Mips32_addi.svg
http://en.wikipedia.org/wiki/File:Mips32_addi.svg

3.17 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

More Example of Assembly Instructions

sub $8, $5, $1 Subtract the contents of CPU registers $5 and $1
 and store the result in register $8
 Exactly as in: $8 = $5 - $1
 In C language, a = b–c can be compiled to such
 instruction

lw $17, 101 ($8) Load word from memory address $8+101 to register $17
 The number ‘101’ is called the ‘offset’ and the
 memory address stored in register $8 is called the
 ‘base register’ and the address it stores is called
 ‘base address’. This type of instructions is useful
 for scanning C arrays (the base address is the array
 pointer and the offset runs from 0 to n-1)

sw $4, 1010 ($9) Store word from memory address $4 to memory address
 $9+1010. The number ‘1010’ is called the ‘offset’
 and the memory address stored in register $9
 is called the ‘base address’ (register $9 is called
 the ‘base register’)

3.18 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

C to Assembly Example

for (i=0; i<100; i++)

 A[i] = A[i] + 127
C program
A is an array of size 100

foo: lw $3, 0($1) # load A[i] from $1 to $3

 add $3, $2, $3 # A[i] = A[i] + 127

 sw $3, 0($1) # store A[i]

 addi $1, $1, 1 # i = i + 1

 bne $1, $4, foo # if i != 100, continue at “foo",

 otherwise at next instruction

Assembly program
MIPS R2000
Before foo: register $1 points to address A[0], $2=127, $4=100

Addi = Add immediate value (direct in instruction, not thru register)
bne = branch not equal: if registers not equal jump to label (foo)
 else continue to next instruction

3.19 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Machine Code: I-type instruction format

100011 01001 01000 0000011111010000 32 bits instruction
lw $9 $8 2000 Semantics

lw Load Word OPCODE 6 bits
$9 Register 9 5 bits
$8 Register 8 5 bits
2000 Offset from address $8 16 bits

- Instruction type is determined by opcode (first 6 bits)
- Note that offset has room for 16 bits only, so maximal offset

value is 2**16-1 = 65535

3.20 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

More Info on MIPS and x86/amd64

 To get more information on MIPS here is a very short summary of all the

MIPS language:

A Minimalistic Introduction to MIPS Instruction

http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm

 This MIPS reference is barely 5 pages !

 (Simplicity is the ultimate sophistication … -Leonardo Da Vinci)

 If you want, here is a full reference to Intel® 64 and IA-32 Architectures

Software Developer’s Manual (3289 pages!)

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/6

4-ia-32-architectures-software-developer-manual-325462.pdf

Highly complex …

http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm
http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm
http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm
http://people.cs.pitt.edu/~xujie/cs447/MIPS_Instruction.htm
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

3.21 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

CPU/Memory View of the Program

 The CPU has a very specific view of the program

 First, the binary data is viewed as a sequence of 32 bits instructions

 Second, these instructions are grouped into pages of (usually 4K) instructions

01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010

01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110

01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110
01101000100110111111001100101010
01100111110001010101001100100010
01111110100001101000000000100110

32 bits 32 bits 32 bits

4k 4k 4k

A program like Microsoft Word which can reach 35 MB size (with DLL’s) may get to 9000 pages.
The modern CPU has large caches for storing many pages at the CPU itself and thus save a lot
of time (the long journey to main memory is very expensive!)
L1 ~ 64 pages, L2 ~ 256 pages, L3 ~ 2048 pages

