
http://www.tuto rialspo int.co m/pytho n/pytho n_quick_g uide.htm Copyrig ht © tutorialspoint.com

PYTHON - QUICK GUIDE

PYTHON OVERVIEW:

Python is a hig h-level, interpreted, interactive and object oriented-scripting lang uag e.

Python is Interpreted

Python is Interactive

Python is Object-Oriented

Python is Beg inner's Lang uag e

Python was developed by Guido van Rossum in the late eig hties and early nineties at the National Research
Institute for Mathematics and Computer Science in the Netherlands.

Python's feature hig hlig hts include:

Easy-to-learn

Easy-to-read

Easy-to-maintain

A broad standard library

Interactive Mode

Portable

Extendable

Databases

GUI Prog ramming

Scalable

GETTING PYTHON:

The most up-to-date and current source code, binaries, documentation, news, etc. is available at the official
website of Python:

Python Official Website : http://www.python.org /

You can download the Python documentation from the following site. The documentation is available in HTML,
PDF, and PostScript formats.

Python Documentation Website : www.python.org /doc/

FIRST PYTHON PROGRAM:

Interactive Mode Prog ramming :

Invoking the interpreter without passing a script file as a parameter bring s up the following prompt:

root# python
Python 2.5 (r25:51908, Nov 6 2007, 16:54:01)
[GCC 4.1.2 20070925 (Red Hat 4.1.2-27)] on linux2
Type "help", "copyright", "credits" or "license" for more info.
>>>

http://www.tutorialspoint.com/python/python_quick_guide.htm
http://www.python.org/
http://www.python.org/doc/

Type the following text to the rig ht of the Python prompt and press the Enter key:

>>> print "Hello, Python!";

This will produce following result:

Hello, Python!

PYTHON IDENTIFIERS:

A Python identifier is a name used to identify a variable, function, class, module, or other object. An identifier
starts with a letter A to Z or a to z or an underscore (_) followed by zero or more letters, underscores, and dig its
(0 to 9).

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is a case sensitive
prog ramming lang uag e. Thus Manpower and manpower are two different identifiers in Python.

Here are following identifier naming convention for Python:

Class names start with an uppercase letter and all other identifiers with a lowercase letter.

Starting an identifier with a sing le leading underscore indicates by convention that the identifier is meant to
be private.

Starting an identifier with two leading underscores indicates a strong ly private identifier.

If the identifier also ends with two trailing underscores, the identifier is a lang uag e-defined special name.

RESERVED WORDS:

The following list shows the reserved words in Python. These reserved words may not be used as constant or
variable or any other identifier names.

and exec not

assert finally or

break for pass

class from print

continue g lobal raise

def if return

del import try

elif in while

else is with

except lambda yield

LINES AND INDENTATION:

One of the first caveats prog rammers encounter when learning Python is the fact that there are no braces to
indicate blocks of code for class and function definitions or flow control. Blocks of code are denoted by line
indentation, which is rig idly enforced.

The number of spaces in the indentation is variable, but all statements within the block must be indented the same

amount. Both blocks in this example are fine:

if True:
 print "True"
else:
 print "False"

However, the second block in this example will g enerate an error:

if True:
 print "Answer"
 print "True"
else:
 print "Answer"
 print "False"

MULTI-LINE STATEMENTS:

Statements in Python typically end with a new line. Python does, however, allow the use of the line continuation
character (\) to denote that the line should continue. For example:

total = item_one + \
 item_two + \
 item_three

Statements contained within the [], {}, or () brackets do not need to use the line continuation character. For
example:

days = ['Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday']

QUOTATION IN PYTHON:

Python accepts sing le ('), double (") and triple (''' or """) quotes to denote string literals, as long as the same type
of quote starts and ends the string .

The triple quotes can be used to span the string across multiple lines. For example, all the following are leg al:

word = 'word'
sentence = "This is a sentence."
paragraph = """This is a paragraph. It is
made up of multiple lines and sentences."""

COMMENTS IN PYTHON:

A hash sig n (#) that is not inside a string literal beg ins a comment. All characters after the # and up to the physical
line end are part of the comment, and the Python interpreter ig nores them.

#!/usr/bin/python

First comment
print "Hello, Python!"; # second comment

This will produce following result:

Hello, Python!

A comment may be on the same line after a statement or expression:

name = "Madisetti" # This is again comment

You can comment multiple lines as follows:

This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.

USING BLANK LINES:

A line containing only whitespace, possibly with a comment, is known as a blank line, and Python totally ig nores it.

In an interactive interpreter session, you must enter an empty physical line to terminate a multiline statement.

MULTIPLE STATEMENTS ON A SINGLE LINE:

The semicolon (;) allows multiple statements on the sing le line g iven that neither statement starts a new code
block. Here is a sample snip using the semicolon:

import sys; x = 'foo'; sys.stdout.write(x + '\n')

MULTIPLE STATEMENT GROUPS AS SUITES:

Groups of individual statements making up a sing le code block are called suites in Python.

Compound or complex statements, such as if, while, def, and class, are those which require a header line and a
suite.

Header lines beg in the statement (with the keyword) and terminate with a colon (:) and are followed by one or
more lines which make up the suite.

Example:

if expression :
 suite
elif expression :
 suite
else :
 suite

PYTHON - VARIABLE TYPES:

Variables are nothing but reserved memory locations to store values. This means that when you create a variable
you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can be stored in the
reserved memory. Therefore, by assig ning different data types to variables, you can store integ ers, decimals,
or characters in these variables.

ASSIGNING VALUES TO VARIABLES:

The operand to the left of the = operator is the name of the variable, and the operand to the rig ht of the =
operator is the value stored in the variable. For example:

counter = 100 # An integer assignment
miles = 1000.0 # A floating point
name = "John" # A string

print counter
print miles
print name

STANDARD DATA TYPES:

STANDARD DATA TYPES:

Python has five standard data types:

Numbers

String

List

Tuple

Dictionary

PYTHON NUMBERS:

Number objects are created when you assig n a value to them. For example:

var1 = 1
var2 = 10

Python supports four different numerical types:

int (sig ned integ ers)

long (long integ ers [can also be represented in octal and hexadecimal])

float (floating point real values)

complex (complex numbers)

Here are some examples of numbers:

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

PYTHON STRINGS:

String s in Python are identified as a contig uous set of characters in between quotation marks.

Example:

str = 'Hello World!'

print str # Prints complete string
print str[0] # Prints first character of the string
print str[2:5] # Prints characters starting from 3rd to 6th
print str[2:] # Prints string starting from 3rd character
print str * 2 # Prints string two times
print str + "TEST" # Prints concatenated string

PYTHON LISTS:

Lists are the most versatile of Python's compound data types. A list contains items separated by commas and
enclosed within square brackets ([]).

#!/usr/bin/python

list = ['abcd', 786 , 2.23, 'john', 70.2]
tinylist = [123, 'john']

print list # Prints complete list
print list[0] # Prints first element of the list
print list[1:3] # Prints elements starting from 2nd to 4th
print list[2:] # Prints elements starting from 3rd element
print tinylist * 2 # Prints list two times
print list + tinylist # Prints concatenated lists

PYTHON TUPLES:

A tuple is another sequence data type that is similar to the list. A tuple consists of a number of values separated by
commas. Unlike lists, however, tuples are enclosed within parentheses.

Tuples can be thoug ht of as read-only lists.

tuple = ('abcd', 786 , 2.23, 'john', 70.2)
tinytuple = (123, 'john')

print tuple # Prints complete list
print tuple[0] # Prints first element of the list
print tuple[1:3] # Prints elements starting from 2nd to 4th
print tuple[2:] # Prints elements starting from 3rd element
print tinytuple * 2 # Prints list two times
print tuple + tinytuple # Prints concatenated lists

PYTHON DICTIONARY:

Python 's dictionaries are hash table type. They work like associative arrays or hashes found in Perl and consist
of key-value pairs.

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}
print dict['one'] # Prints value for 'one' key
print dict[2] # Prints value for 2 key
print tinydict # Prints complete dictionary
print tinydict.keys() # Prints all the keys
print tinydict.values() # Prints all the values

PYTHON - BASIC OPERATORS:

Operator Description Example

+ Addition - Adds values on either side of the operator a + b will g ive 30

- Subtraction - Subtracts rig ht hand operand from left
hand operand

a - b will g ive -10

* Multiplication - Multiplies values on either side of the
operator

a * b will g ive 200

/ Division - Divides left hand operand by rig ht hand
operand

b / a will g ive 2

% Modulus - Divides left hand operand by rig ht hand
operand and returns remainder

b % a will g ive 0

** Exponent - Performs exponential (power) calculation on
operators

a**b will g ive 10 to the power 20

// Floor Division - The division of operands where the
result is the quotient in which the dig its after the decimal
point are removed.

9//2 is equal to 4 and 9.0//2.0 is
equal to 4.0

== Checks if the value of two operands are equal or not, if
yes then condition becomes true.

(a == b) is not true.

!= Checks if the value of two operands are equal or not, if
values are not equal then condition becomes true.

(a != b) is true.

<> Checks if the value of two operands are equal or not, if
values are not equal then condition becomes true.

(a <> b) is true. This is similar to !=
operator.

> Checks if the value of left operand is g reater than the
value of rig ht operand, if yes then condition becomes
true.

(a > b) is not true.

< Checks if the value of left operand is less than the value
of rig ht operand, if yes then condition becomes true.

(a < b) is true.

>= Checks if the value of left operand is g reater than or
equal to the value of rig ht operand, if yes then condition
becomes true.

(a >= b) is not true.

<= Checks if the value of left operand is less than or equal to
the value of rig ht operand, if yes then condition becomes
true.

(a <= b) is true.

= Simple assig nment operator, Assig ns values from rig ht
side operands to left side operand

c = a + b will assig ne value of a + b
into c

+= Add AND assig nment operator, It adds rig ht operand to
the left operand and assig n the result to left operand

c += a is equivalent to c = c + a

-= Subtract AND assig nment operator, It subtracts rig ht
operand from the left operand and assig n the result to
left operand

c -= a is equivalent to c = c - a

*= Multiply AND assig nment operator, It multiplies rig ht
operand with the left operand and assig n the result to
left operand

c *= a is equivalent to c = c * a

/= Divide AND assig nment operator, It divides left
operand with the rig ht operand and assig n the result to
left operand

c /= a is equivalent to c = c / a

%= Modulus AND assig nment operator, It takes modulus
using two operands and assig n the result to left operand

c %= a is equivalent to c = c % a

**= Exponent AND assig nment operator, Performs
exponential (power) calculation on operators and assig n
value to the left operand

c **= a is equivalent to c = c ** a

//= Floor Dividion and assig ns a value, Performs floor
division on operators and assig n value to the left
operand

c //= a is equivalent to c = c // a

& Binary AND Operator copies a bit to the result if it exists
in both operands.

(a & b) will g ive 12 which is 0000
1100

| Binary OR Operator copies a bit if it exists in eather
operand.

(a | b) will g ive 61 which is 0011
1101

^ Binary XOR Operator copies the bit if it is set in one
operand but not both.

(a ^ b) will g ive 49 which is 0011
0001

~ Binary Ones Complement Operator is unary and has the
efect of 'flipping ' bits.

(~a) will g ive -61 which is 1100
0011 in 2's complement form due to
a sig ned binary number.

<< Binary Left Shift Operator. The left operands value is
moved left by the number of bits specified by the rig ht
operand.

a << 2 will g ive 240 which is 1111
0000

>> Binary Rig ht Shift Operator. The left operands value is
moved rig ht by the number of bits specified by the rig ht
operand.

a >> 2 will g ive 15 which is 0000
1111

and Called Log ical AND operator. If both the operands are
true then then condition becomes true.

(a and b) is true.

or Called Log ical OR Operator. If any of the two operands
are non zero then then condition becomes true.

(a or b) is true.

not Called Log ical NOT Operator. Use to reverses the
log ical state of its operand. If a condition is true then
Log ical NOT operator will make false.

not(a && b) is false.

in Evaluates to true if it finds a variable in the specified
sequence and false otherwise.

x in y, here in results in a 1 if x is a
member of sequence y.

not in Evaluates to true if it does not finds a variable in the
specified sequence and false otherwise.

x not in y, here not in results in a 1
if x is not a member of sequence y.

is Evaluates to true if the variables on either side of the
operator point to the same object and false otherwise.

x is y, here is results in 1 if id(x)
equals id(y).

is not Evaluates to false if the variables on either side of the
operator point to the same object and true otherwise.

x is not y, here is not results in 1 if
id(x) is not equal to id(y).

PYTHON OPERATORS PRECEDENCE

The following table lists all operators from hig hest precedence to lowest.

Operator Description

** Exponentiation (raise to the power)

~ + - Ccomplement, unary plus and minus (method names for the last two
are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Rig ht and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and reg ular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= += |= &= >>= <<=
*= **=

Assig nment operators

is is not Identity operators

in not in Membership operators

note or and Log ical operators

THE IF STATEMENT:

The syntax of the if statement is:

if expression:
 statement(s)

THE ELSE STATEMENT:

The syntax of the if...else statement is:

if expression:
 statement(s)
else:
 statement(s)

THE ELIF STATEMENT

The syntax of the if...elif statement is:

if expression1:
 statement(s)
elif expression2:
 statement(s)
elif expression3:
 statement(s)
else:
 statement(s)

THE NESTED IF...ELIF...ELSE CONSTRUCT

The syntax of the nested if...elif...else construct may be:

if expression1:
 statement(s)
 if expression2:
 statement(s)
 elif expression3:
 statement(s)
 else
 statement(s)
elif expression4:
 statement(s)
else:
 statement(s)

THE WHILE LOOP:

The syntax of the while look is:

while expression:
 statement(s)

THE INFINITE LOOPS:

You must use caution when using while loops because of the possibility that this condition never resolves to a
false value. This results in a loop that never ends. Such a loop is called an infinite loop.

An infinite loop mig ht be useful in client/server prog ramming where the server needs to run continuously so that
client prog rams can communicate with it as and when required.

SINGLE STATEMENT SUITES:

Similar to the if statement syntax, if your while clause consists only of a sing le statement, it may be placed on the
same line as the while header.

Here is an example of a one-line while clause:

while expression : statement

THE FOR LOOP:

The syntax of the loop look is:

for iterating_var in sequence:
 statements(s)

ITERATING BY SEQUENCE INDEX:

An alternative way of iterating throug h each item is by index offset into the sequence itself:

fruits = ['banana', 'apple', 'mango']
for index in range(len(fruits)):
 print 'Current fruit :', fruits[index]

print "Good bye!"

THE BREAK STATEMENT:

The break statement in Python terminates the current loop and resumes execution at the next statement, just
like the traditional break found in C.

The most common use for break is when some external condition is trig g ered requiring a hasty exit from a loop.
The break statement can be used in both while and for loops.

for letter in 'Python': # First Example
 if letter == 'h':
 break
 print 'Current Letter :', letter

var = 10 # Second Example
while var > 0:
 print 'Current variable value :', var
 var = var -1
 if var == 5:
 break

print "Good bye!"

THE CONTINUE STATEMENT:

The continue statement in Python returns the control to the beg inning of the while loop. The continue
statement rejects all the remaining statements in the current iteration of the loop and moves the control back to
the top of the loop.

The continue statement can be used in both while and for loops.

for letter in 'Python': # First Example
 if letter == 'h':
 continue
 print 'Current Letter :', letter

var = 10 # Second Example
while var > 0:
 print 'Current variable value :', var
 var = var -1
 if var == 5:
 continue

print "Good bye!"

THE ELSE STATEMENT USED WITH LOOPS

Python supports to have an else statement associated with a loop statements.

If the else statement is used with a for loop, the else statement is executed when the loop has exhausted
iterating the list.

If the else statement is used with a while loop, the else statement is executed when the condition
becomes false.

THE PASS STATEMENT:

The pass statement in Python is used when a statement is required syntactically but you do not want any
command or code to execute.

The pass statement is a null operation; nothing happens when it executes. The pass is also useful in places
where your code will eventually g o, but has not been written yet (e.g ., in stubs for example):

#!/usr/bin/python

for letter in 'Python':
 if letter == 'h':
 pass
 print 'This is pass block'
 print 'Current Letter :', letter

print "Good bye!"

DEFINING A FUNCTION

You can define functions to provide the required functionality. Here are simple rules to define a function in Python:

Function blocks beg in with the keyword def followed by the function name and parentheses (()).

Any input parameters or arg uments should be placed within these parentheses. You can also define
parameters inside these parentheses.

The first statement of a function can be an optional statement - the documentation string of the function or
docstring.

The code block within every function starts with a colon (:) and is indented.

The statement return [expression] exits a function, optionally passing back an expression to the caller. A
return statement with no arg uments is the same as return None.

Syntax:

def functionname(parameters):
 "function_docstring"
 function_suite
 return [expression]

By default, parameters have a positional behavior, and you need to inform them in the same order that they were
defined.

Example:

Here is the simplest form of a Python function. This function takes a string as input parameter and prints it on
standard screen.

def printme(str):
 "This prints a passed string into this function"
 print str
 return

CALLING A FUNCTION

Defining a function only g ives it a name, specifies the parameters that are to be included in the function, and
structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from another function or directly
from the Python prompt.

Following is the example to call printme() function:

#!/usr/bin/python

Function definition is here
def printme(str):
 "This prints a passed string into this function"
 print str;
 return;

Now you can call printme function
printme("I'm first call to user defined function!");
printme("Again second call to the same function");

This would produce following result:

I'm first call to user defined function!
Again second call to the same function

PYTHON - MODULES:

A module allows you to log ically org anize your Python code. Grouping related code into a module makes the
code easier to understand and use.

A module is a Python object with arbitrarily named attributes that you can bind and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes, and variables. A
module can also include runnable code.

Example:

The Python code for a module named aname normally resides in a file named aname.py. Here's an example of a
simple module, hello.py

def print_func(par):
 print "Hello : ", par

 return

THE IMPORT STATEMENT:

You can use any Python source file as a module by executing an import statement in some other Python source
file. import has the following syntax:

import module1[, module2[,... moduleN]

When the interpreter encounters an import statement, it imports the module if the module is present in the search
path. A search path is a list of directories that the interpreter searches before importing a module.

Example:

To import the module hello.py, you need to put the following command at the top of the script:

#!/usr/bin/python

Import module hello
import hello

Now you can call defined function that module as follows
hello.print_func("Zara")

This would produce following result:

Hello : Zara

A module is loaded only once, reg ardless of the number of times it is imported. This prevents the module
execution from happening over and over ag ain if multiple imports occur.

OPENING AND CLOSING FILES:

The open Function:

Before you can read or write a file, you have to open it using Python's built-in open() function. This function
creates a file object which would be utilized to call other support methods associated with it.

Syntax:

file object = open(file_name [, access_mode][, buffering])

Here is paramters detail:

file_name: The file_name arg ument is a string value that contains the name of the file that you want to
access.

access_mode: The access_mode determines the mode in which the file has to be opened ie. read,
write append etc. A complete list of possible values is g iven below in the table. This is optional parameter
and the default file access mode is read (r)

buffering : If the buffering value is set to 0, no buffering will take place. If the buffering value is 1, line
buffering will be performed while accessing a file. If you specify the buffering value as an integ er g reater
than 1, then buffering action will be performed with the indicated buffer size. This is optional paramter.

Here is a list of the different modes of opening a file:

Modes Description

r Opens a file for reading only. The file pointer is placed at the beg inning of the file. This is the
default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the beg inning of the file.
This is the default mode.

r+ Opens a file for both reading and writing . The file pointer will be at the beg inning of the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer will be at the beg inning
of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not exist, creates a
new file for writing .

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the file does not
exist, creates a new file for writing .

w+ Opens a file for both writing and reading . Overwrites the existing file if the file exists. If the file
does not exist, creates a new file for reading and writing .

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file if the file
exists. If the file does not exist, creates a new file for reading and writing .

a Opens a file for appending . The file pointer is at the end of the file if the file exists. That is, the file is
in the append mode. If the file does not exist, it creates a new file for writing .

ab Opens a file for appending in binary format. The file pointer is at the end of the file if the file exists.
That is, the file is in the append mode. If the file does not exist, it creates a new file for writing .

a+ Opens a file for both appending and reading . The file pointer is at the end of the file if the file exists.
The file opens in the append mode. If the file does not exist, it creates a new file for reading and
writing .

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the end of the
file if the file exists. The file opens in the append mode. If the file does not exist, it creates a new file
for reading and writing .

The file object atrributes:

Once a file is opened and you have one file object, you can g et various information related to that file.

Here is a list of all attributes related to file object:

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true otherwise.

The close() Method:

The close() method of a file object flushes any unwritten information and closes the file object, after which no
more writing can be done.

fileObject.close();

READING AND WRITING FILES:

The write() Method:

Syntax:

fileObject.write(string);

The read() Method:

Syntax:

fileObject.read([count]);

FILE POSITIONS:

The tell() method tells you the current position within the file in other words, the next read or write will occur at
that many bytes from the beg inning of the file:

The seek(offset[, from]) method chang es the current file position. The offset arg ument indicates the number of
bytes to be moved. The from arg ument specifies the reference position from where the bytes are to be moved.

If from is set to 0, it means use the beg inning of the file as the reference position and 1 means use the current
position as the reference position and if it is set to 2 then the end of the file would be taken as the reference
position.

RENAMING AND DELETING FILES:

Syntax:

os.rename(current_file_name, new_file_name)

The remove() Method:

Syntax:

os.remove(file_name)

DIRECTORIES IN PYTHON:

The mkdir() Method:

You can use the mkdir() method of the os module to create directories in the current directory. You need to
supply an arg ument to this method, which contains the name of the directory to be created.

Syntax:

os.mkdir("newdir")

The chdir() Method:

You can use the chdir() method to chang e the current directory. The chdir() method takes an arg ument, which is
the name of the directory that you want to make the current directory.

Syntax:

os.chdir("newdir")

The getcwd() Method:

The getcwd() method displays the current working directory.

Syntax:

os.getcwd()

The rmdir() Method:

The rmdir() method deletes the directory, which is passed as an arg ument in the method.

Before removing a directory, all the contents in it should be removed.

Syntax:

os.rmdir('dirname')

HANDLING AN EXCEPTION:

If you have some suspicious code that may raise an exception, you can defend your prog ram by placing the
suspicious code in a try: block. After the try: block, include an except: statement, followed by a block of code
which handles the problem as eleg antly as possible.

Syntax:

Here is simple syntax of try....except...else blocks:

try:
 Do you operations here;

except ExceptionI:
 If there is ExceptionI, then execute this block.
except ExceptionII:
 If there is ExceptionII, then execute this block.

else:
 If there is no exception then execute this block.

Here are few important points about the above mentioned syntax:

A sing le try statement can have multiple except statements. This is useful when the try block contains
statements that may throw different types of exceptions.

You can also provide a g eneric except clause, which handles any exception.

After the except clause(s), you can include an else-clause. The code in the else-block executes if the code
in the try: block does not raise an exception.

The else-block is a g ood place for code that does not need the try: block's protection.

THE EXCEPT CLAUSE WITH NO EXCEPTIONS:

You can also use the except statement with no exceptions defined as follows:

try:
 Do you operations here;

except:
 If there is any exception, then execute this block.

else:
 If there is no exception then execute this block.

THE EXCEPT CLAUSE WITH MULTIPLE EXCEPTIONS:

You can also use the same except statement to handle multiple exceptions as follows:

try:
 Do you operations here;

except(Exception1[, Exception2[,...ExceptionN]]]):
 If there is any exception from the given exception list,
 then execute this block.

else:
 If there is no exception then execute this block.

STANDARD EXCEPTIONS:

Here is a list standard Exceptions available in Python: Standard Exceptions

THE TRY-FINALLY CLAUSE:

You can use a finally: block along with a try: block. The finally block is a place to put any code that must execute,
whether the try-block raised an exception or not. The syntax of the try-finally statement is this:

try:
 Do you operations here;

 Due to any exception, this may be skipped.
finally:
 This would always be executed.

ARGUMENT OF AN EXCEPTION:

An exception can have an argument, which is a value that g ives additional information about the problem. The
contents of the arg ument vary by exception. You capture an exception's arg ument by supplying a variable in the
except clause as follows:

try:
 Do you operations here;

except ExceptionType, Argument:
 You can print value of Argument here...

RAISING AN EXCEPTIONS:

You can raise exceptions in several ways by using the raise statement. The g eneral syntax for the raise
statement.

Syntax:

raise [Exception [, args [, traceback]]]

USER-DEFINED EXCEPTIONS:

Python also allows you to create your own exceptions by deriving classes from the standard built-in exceptions.

Here is an example related to RuntimeError. Here a class is created that is subclassed from RuntimeError.
This is useful when you need to display more specific information when an exception is caug ht.

In the try block, the user-defined exception is raised and caug ht in the except block. The variable e is used to
create an instance of the class Networkerror.

class Networkerror(RuntimeError):
 def __init__(self, arg):
 self.args = arg

/python/standard_exceptions.htm

So once you defined above class, you can raise your exception as follows:

try:
 raise Networkerror("Bad hostname")
except Networkerror,e:
 print e.args

CREATING CLASSES:

The class statement creates a new class definition. The name of the class immediately follows the keyword class
followed by a colon as follows:

class ClassName:
 'Optional class documentation string'
 class_suite

The class has a documentation string which can be access via ClassName.__doc__.

The class_suite consists of all the component statements, defining class members, data attributes, and
functions.

CREATING INSTANCE OBJECTS:

To create instances of a class, you call the class using class name and pass in whatever arg uments its __init__
method accepts.

"This would create first object of Employee class"
emp1 = Employee("Zara", 2000)
"This would create second object of Employee class"
emp2 = Employee("Manni", 5000)

ACCESSING ATTRIBUTES:

You access the object's attributes using the dot operator with object. Class variable would be accessed using
class name as follows:

emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount

BUILT-IN CLASS ATTRIBUTES:

Every Python class keeps following built-in attributes and they can be accessed using dot operator like any other
attribute:

__dict__ : Dictionary containing the class's namespace.

__doc__ : Class documentation string , or None if undefined.

__name__: Class name.

__module__: Module name in which the class is defined. This attribute is "__main__" in interactive
mode.

__bases__ : A possibly empty tuple containing the base classes, in the order of their occurrence in the
base class list.

DESTROYING OBJECTS (GARBAGE COLLECTION):

Python deletes unneeded objects (built-in types or class instances) automatically to free memory space. The
process by which Python periodically reclaims blocks of memory that no long er are in use is termed g arbag e
collection.

collection.

Python's g arbag e collector runs during prog ram execution and is trig g ered when an object's reference count
reaches zero. An object's reference count chang es as the number of aliases that point to it chang es:

An object's reference count increases when it's assig ned a new name or placed in a container (list, tuple, or
dictionary). The object's reference count decreases when it's deleted with del, its reference is reassig ned, or its
reference g oes out of scope. When an object's reference count reaches zero, Python collects it automatically.

CLASS INHERITANCE:

Instead of starting from scratch, you can create a class by deriving it from a preexisting class by listing the parent
class in parentheses after the new class name:

The child class inherits the attributes of its parent class, and you can use those attributes as if they were defined in
the child class. A child class can also override data members and methods from the parent.

Syntax:

Derived classes are declared much like their parent class; however, a list of base classes to inherit from are
g iven after the class name:

class SubClassName (ParentClass1[, ParentClass2, ...]):
 'Optional class documentation string'
 class_suite

OVERRIDING METHODS:

You can always override your parent class methods. One reason for overriding parent's methods is because you
may want special or different functionality in your subclass.

class Parent: # define parent class
 def myMethod(self):
 print 'Calling parent method'

class Child(Parent): # define child class
 def myMethod(self):
 print 'Calling child method'

c = Child() # instance of child
c.myMethod() # child calls overridden method

BASE OVERLOADING METHODS:

Following table lists some g eneric functionality that you can override in your own classes:

SN Method, Description & Sample Call

1 __init__ (self [,arg s...])
Constructor (with any optional arg uments)
Sample Call : obj = className(args)

2 __del__(self)
Destructor, deletes an object
Sample Call : dell obj

3 __repr__(self)
Evaluatable string representation
Sample Call : repr(obj)

4 __str__(self)
Printable string representation
Sample Call : str(obj)

5 __cmp__ (self, x)
Object comparison
Sample Call : cmp(obj, x)

OVERLOADING OPERATORS:

Suppose you've created a Vector class to represent two-dimensional vectors. What happens when you use the
plus operator to add them? Most likely Python will yell at you.

You could, however, define the __add__ method in your class to perform vector addition, and then the plus
operator would behave as per expectation:

#!/usr/bin/python

class Vector:
 def __init__(self, a, b):
 self.a = a
 self.b = b

 def __str__(self):
 return 'Vector (%d, %d)' % (self.a, self.b)

 def __add__(self,other):
 return Vector(self.a + other.a, self.b + other.b)

v1 = Vector(2,10)
v2 = Vector(5,-2)
print v1 + v2

DATA HIDING:

An object's attributes may or may not be visible outside the class definition. For these cases, you can name
attributes with a double underscore prefix, and those attributes will not be directly visible to outsiders:

#!/usr/bin/python

class JustCounter:
 __secretCount = 0

 def count(self):
 self.__secretCount += 1
 print self.__secretCount

counter = JustCounter()
counter.count()
counter.count()
print counter.__secretCount

A regular expression is a special sequence of characters that helps you match or find other string s or sets of
string s, using a specialized syntax held in a pattern. Reg ular expressions are widely used in UNIX world.

The module re provides full support for Perl-like reg ular expressions in Python. The re module raises the
exception re.error if an error occurs while compiling or using a reg ular expression.

We would cover two important functions which would be used to handle reg ular expressions. But a small thing
first: There are various characters which would have special meaning when they are used in reg ular expression.
To avoid any confusion while dealing with reg ular expressions we would use Raw String s as r'expression' .

THE MATCH FUNCTION

This function attempts to match RE pattern to string with optional flags.

Here is the syntax for this function:

re.match(pattern, string, flags=0)

Here is the description of the parameters:

Parameter Description

pattern This is the reg ular expression to be matched.

string This is the string which would be searched to match the pattern

flag s You can specifiy different flag s using exclusive OR (|). These are modifiers
which are listed in the table below.

The re.match function returns a match object on success, None on failure. We would use group(num) or
groups() function of match object to g et matched expression.

Match Object Methods Description

g roup(num=0) This methods returns entire match (or specific subg roup num)

g roups() This method return all matching subg roups in a tuple (empty if there weren't
any)

THE SEARCH FUNCTION

This function search for first occurrence of RE pattern within string with optional flags.

Here is the syntax for this function:

re.string(pattern, string, flags=0)

Here is the description of the parameters:

Parameter Description

pattern This is the reg ular expression to be matched.

string This is the string which would be searched to match the pattern

flag s You can specifiy different flag s using exclusive OR (|). These are modifiers
which are listed in the table below.

The re.search function returns a match object on success, None on failure. We would use group(num) or
groups() function of match object to g et matched expression.

Match Object Methods Description

g roup(num=0) This methods returns entire match (or specific subg roup num)

g roups() This method return all matching subg roups in a tuple (empty if there weren't
any)

MATCHING VS SEARCHING:

Python offers two different primitive operations based on reg ular expressions: match checks for a match only at
the beg inning of the string , while search checks for a match anywhere in the string (this is what Perl does by
default).

SEARCH AND REPLACE:

Some of the most important re methods that use reg ular expressions is sub.

Syntax:

sub(pattern, repl, string, max=0)

This method replace all occurrences of the RE pattern in string with repl, substituting all occurrences unless
max provided. This method would return modified string .

REGULAR-EXPRESSION MODIFIERS - OPTION FLAGS

Reg ular expression literals may include an optional modifier to control various aspects of matching . The modifier
are specified as an optional flag . You can provide multiple modified using exclusive OR (|), as shown previously
and may be represented by one of these:

Modifier Description

re.I Performs case-insensitive matching .

re.L Interprets words according to the current locale.This interpretation affects the alphabetic
g roup (\w and \W), as well as word boundary behavior (\b and \B).

re.M Makes $ match the end of a line (not just the end of the string) and makes ^ match the start of
any line (not just the start of the string).

re.S Makes a period (dot) match any character, including a newline.

re.U Interprets letters according to the Unicode character set. This flag affects the behavior of \w,
\W, \b, \B.

re.X Permits "cuter" reg ular expression syntax. It ig nores whitespace (except inside a set [] or
when escaped by a backslash), and treats unescaped # as a comment marker.

REGULAR-EXPRESSION PATTERNS:

Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match themselves. You can escape a
control character by preceding it with a backslash.

Following table lists the reg ular expression syntax that is available in Python.

Pattern Description

^ Matches beg inning of line.

$ Matches end of line.

. Matches any sing le character except newline. Using m option allows it to match
newline as well.

[...] Matches any sing le character in brackets.

[^...] Matches any sing le character not in brackets

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding expression.

a| b Matches either a or b.

(re) Groups reg ular expressions and remembers matched text.

(?imx) Temporarily tog g les on i, m, or x options within a reg ular expression. If in
parentheses, only that area is affected.

(?-imx) Temporarily tog g les off i, m, or x options within a reg ular expression. If in
parentheses, only that area is affected.

(?: re) Groups reg ular expressions without remembering matched text.

(?imx: re) Temporarily tog g les on i, m, or x options within parentheses.

(?-imx: re) Temporarily tog g les off i, m, or x options within parentheses.

(?#...) Comment.

(?= re) Specifies position using a pattern. Doesn't have a rang e.

(?! re) Specifies position using pattern neg ation. Doesn't have a rang e.

(?> re) Matches independent pattern without backtracking .

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches dig its. Equivalent to [0-9].

\D Matches nondig its.

\A Matches beg inning of string .

\Z Matches end of string . If a newline exists, it matches just before newline.

\z Matches end of string .

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches backspace (0x08)
when inside brackets.

\B Matches nonword boundaries.

\n, \t, etc. Matches newlines, carriag e returns, tabs, etc.

\1...\9 Matches nth g rouped subexpression.

\10 Matches nth g rouped subexpression if it matched already. Otherwise refers to
the octal representation of a character code.

REGULAR-EXPRESSION EXAMPLES:

Literal characters:

Example Description

python Match "python".

Character classes:

Example Description

[Pp]ython Match "Python" or "python"

rub[ye] Match "ruby" or "rube"

[aeiou] Match any one lowercase vowel

[0-9] Match any dig it; same as [0123456789]

[a-z] Match any lowercase ASCII letter

[A-Z] Match any uppercase ASCII letter

[a-zA-Z0-9] Match any of the above

[^aeiou] Match anything other than a lowercase vowel

[^0-9] Match anything other than a dig it

Special Character Classes:

Example Description

. Match any character except newline

\d Match a dig it: [0-9]

\D Match a nondig it: [^0-9]

\s Match a whitespace character: [\t\r\n\f]

\S Match nonwhitespace: [^ \t\r\n\f]

\w Match a sing le word character: [A-Za-z0-9_]

\W Match a nonword character: [^A-Za-z0-9_]

Repetition Cases:

Example Description

ruby? Match "rub" or "ruby": the y is optional

ruby* Match "rub" plus 0 or more ys

ruby+ Match "rub" plus 1 or more ys

\d{3} Match exactly 3 dig its

\d{3,} Match 3 or more dig its

\d{3,5} Match 3, 4, or 5 dig its

Nong reedy repetition:

This matches the smallest number of repetitions:

Example Description

<.*> Greedy repetition: matches "<python>perl>"

<.*?> Nong reedy: matches "<python>" in "<python>perl>"

Grouping with parentheses:

Example Description

\D\d+ No g roup: + repeats \d

(\D\d)+ Grouped: + repeats \D\d pair

([Pp]ython(,)?)+ Match "Python", "Python, python, python", etc.

Backreferences:

This matches a previously matched g roup ag ain:

Example Description

([Pp])ython&\1ails Match python&rails or Python&Rails

(['"])[^\1]*\1 Sing le or double-quoted string . \1 matches whatever the 1st g roup matched . \2
matches whatever the 2nd g roup matched, etc.

Alternatives:

Example Description

python|perl Match "python" or "perl"

rub(y|le)) Match "ruby" or "ruble"

Python(!+|\?) "Python" followed by one or more ! or one ?

Anchors:

This need to specify match position

Example Description

^Python Match "Python" at the start of a string or internal line

Python$ Match "Python" at the end of a string or line

\APython Match "Python" at the start of a string

Python\Z Match "Python" at the end of a string

\bPython\b Match "Python" at a word boundary

\brub\B \B is nonword boundary: match "rub" in "rube" and "ruby" but not alone

Python(?=!) Match "Python", if followed by an exclamation point

Python(?!!) Match "Python", if not followed by an exclamation point

Special syntax with parentheses:

Example Description

R(?#comment) Matches "R". All the rest is a comment

R(?i)uby Case-insensitive while matching "uby"

R(?i:uby) Same as above

rub(?:y|le)) Group only without creating \1 backreference

	PYTHON - QUICK GUIDE
	PYTHON OVERVIEW:
	GETTING PYTHON:
	FIRST PYTHON PROGRAM:
	Interactive Mode Programming:

	PYTHON IDENTIFIERS:
	RESERVED WORDS:
	LINES AND INDENTATION:
	MULTI-LINE STATEMENTS:
	QUOTATION IN PYTHON:
	COMMENTS IN PYTHON:
	USING BLANK LINES:
	MULTIPLE STATEMENTS ON A SINGLE LINE:
	MULTIPLE STATEMENT GROUPS AS SUITES:
	Example:

	PYTHON - VARIABLE TYPES:
	ASSIGNING VALUES TO VARIABLES:
	STANDARD DATA TYPES:
	PYTHON NUMBERS:
	PYTHON STRINGS:
	Example:

	PYTHON LISTS:
	PYTHON TUPLES:
	PYTHON DICTIONARY:
	PYTHON - BASIC OPERATORS:
	PYTHON OPERATORS PRECEDENCE
	THE IF STATEMENT:
	THE ELSE STATEMENT:
	THE ELIF STATEMENT
	THE NESTED IF...ELIF...ELSE CONSTRUCT
	THE WHILE LOOP:
	THE INFINITE LOOPS:
	SINGLE STATEMENT SUITES:
	THE FOR LOOP:
	ITERATING BY SEQUENCE INDEX:
	THE BREAK STATEMENT:
	THE CONTINUE STATEMENT:
	THE ELSE STATEMENT USED WITH LOOPS
	THE PASS STATEMENT:
	DEFINING A FUNCTION
	Syntax:
	Example:

	CALLING A FUNCTION
	PYTHON - MODULES:
	Example:

	THE IMPORT STATEMENT:
	Example:

	OPENING AND CLOSING FILES:
	The open Function:
	Syntax:
	The file object atrributes:
	The close() Method:

	READING AND WRITING FILES:
	The write() Method:
	Syntax:
	The read() Method:
	Syntax:

	FILE POSITIONS:
	RENAMING AND DELETING FILES:
	Syntax:
	The remove() Method:
	Syntax:

	DIRECTORIES IN PYTHON:
	The mkdir() Method:
	Syntax:
	The chdir() Method:
	Syntax:
	The getcwd() Method:
	Syntax:
	The rmdir() Method:
	Syntax:

	HANDLING AN EXCEPTION:
	Syntax:

	THE EXCEPT CLAUSE WITH NO EXCEPTIONS:
	THE EXCEPT CLAUSE WITH MULTIPLE EXCEPTIONS:
	STANDARD EXCEPTIONS:
	THE TRY-FINALLY CLAUSE:
	ARGUMENT OF AN EXCEPTION:
	RAISING AN EXCEPTIONS:
	Syntax:

	USER-DEFINED EXCEPTIONS:
	CREATING CLASSES:
	CREATING INSTANCE OBJECTS:
	ACCESSING ATTRIBUTES:
	BUILT-IN CLASS ATTRIBUTES:
	DESTROYING OBJECTS (GARBAGE COLLECTION):
	CLASS INHERITANCE:
	Syntax:

	OVERRIDING METHODS:
	BASE OVERLOADING METHODS:
	OVERLOADING OPERATORS:
	DATA HIDING:
	THE MATCH FUNCTION
	THE SEARCH FUNCTION
	MATCHING VS SEARCHING:
	SEARCH AND REPLACE:
	Syntax:

	REGULAR-EXPRESSION MODIFIERS - OPTION FLAGS
	REGULAR-EXPRESSION PATTERNS:
	REGULAR-EXPRESSION EXAMPLES:
	Literal characters:
	Character classes:
	Special Character Classes:
	Repetition Cases:
	Nongreedy repetition:
	Grouping with parentheses:
	Backreferences:
	Alternatives:
	Anchors:
	Special syntax with parentheses:

