
1Object Oriented Programming 31695

OOP CHARACTERISTICS

Part 2:

Object Oriented Analysis



2Object Oriented Programming 31695

 Each object created in a program is an instance of a 

class. 

 Each class presents to the outside world a concise and 

consistent view of the objects that are instances of this 

class

 without going into too much unnecessary detail or giving others 

access to the inner workings of the objects. 

 The class definition typically specifies instance variables

 Also known as data members, that the object contains

 As well as the methods, also known as member functions, that 

the object can execute. 

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


3Object Oriented Programming 31695

Members and Methods

class BankAccount:
def __init__(self, initial_balance=0):

self.balance = initial_balance # Member
self.limit = -10000                 # Member

def deposit(self, amount):              # Method
self.balance += amount

def withdraw(self, amount):             # Method
if self.balance - amount < self.limit:

print "Cannot withdraw!"
return

self.balance -= amount

def overdrawn(self):                    # Method
return self.balance < 0

 Members

 balance

 limit

 Methods:

 deposit

 withdraw

 overdrawn

https://samyzaf.com/braude/OOP/CODE/bankaccount.py


4Object Oriented Programming 31695

Members and Methods
class BankAccount:

def __init__(self, initial_balance=0):
self.balance = initial_balance # Member
self.limit = -10000                 # Member

def deposit(self, amount):              # Method
self.balance += amount

def withdraw(self, amount):             # Method
if self.balance - amount < self.limit:

print "Cannot withdraw!"
return

self.balance -= amount

def overdrawn(self):                    # Method
return self.balance < 0

# Usage Example
if __name__ == "__main__":

a = BankAccount(15)
a.deposit(17)
a.withdraw(12)
print "a blanace =", a.balance # Member
print "a overdrawn?", a.overdrawn()    # Method

b = BankAccount(100)
b.deposit(200)
b.withdraw(740)
print "b blanace =", b.balance # Member
print "b overdrawn?", b.overdrawn()    # Method

# a and b are married
# What is their total balance?
print "Total =", a.balance + b.balance

https://samyzaf.com/braude/OOP/CODE/bankaccount.py


5Object Oriented Programming 31695

Robustness (איתנות)

We want software to be capable of handling 

unexpected inputs that are not explicitly defined for 

its application

Adaptability (סגילות)

Software needs to be able to evolve over time in 

response to changing conditions in its environment

Reusability (שימוש חוזר)
The same code should be usable as a component of 

different systems in various applications

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


6Object Oriented Programming 31695

Modularity (מודולריות Lego)
Property of a system which has been decomposed into a 

set of cohesive and loosely coupled modules. source code 

of the application is divided into small independent modules

Abstraction (הפשטה)
Essential characteristics of an object that we want to model. 

In the real world, the object usually has too many 

characteristics which do not interest us. Simplification.

Encapsulation (כימוס)
The ability of an object to hide its data and methods from 

the rest of the world. objects encapsulate data and 

implementation, the user of an object can view the object as 

a black box that provides services

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


7Object Oriented Programming 31695

Responsibilities

Divide the work into different actors, each with a 

different responsibility

 Independence

Define the work for each class to be as 

independent from other classes as possible.

Behaviors

Define the behaviors for each class carefully and 

precisely, so that the consequences of each action 

performed by a class will be well understood by 

other classes that interact with it.

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


8Object Oriented Programming 31695

A class diagram has three portions.

1. The name of the class

2. The recommended instance variables

3. The recommended methods of the class.

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


9Object Oriented Programming 31695

 A class serves as the primary means for abstraction in 

object-oriented programming.

 In Python, every piece of data is represented as an instance 

of some class.

 A class provides a set of behaviors in the form of member 

functions (also known as methods), with implementations 

that belong to all its instances.

 A class also serves as a blueprint  ,for its instances (שרטוט)

effectively determining the way that state information for 

each instance is represented in the form of attributes (also 

known as fields, instance variables, or data members).

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


10Object Oriented Programming 31695

 In Python, the self identifier plays a key role. 

 In any class, there can possibly be many different 

instances, and each must maintain its own instance 

variables.

 Therefore, each instance stores its own instance variables 

to reflect its current state. Syntactically, self identifies the 

instance upon which a method is invoked

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


11Object Oriented Programming 31695

Example: CreditCard Class

class CreditCard:
"""A consumer credit card."""

def __init__(self, customer, bank, acnt, limit):
"""Create a new credit card instance.
The initial balance is zero.
customer the name of the customer (e.g., 'John Bowman')
bank     the name of the bank (e.g., 'California Savings')
acnt the account identifier (e.g., '5391 0375 9387 5309')
limit    credit limit (measured in dollars)
"""
self._customer = customer
self._bank = bank
self._account = acnt
self._limit = limit
self._balance = 0

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

https://samyzaf.com/braude/OOP/CODE/credit_card.py
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


12Object Oriented Programming 31695

Example: CreditCard Class (2)

def get_customer(self):                        # Accessor
"""Return name of the customer."""
return self._customer

def get_bank(self):                            # Accessor
"""Return the bank's name."""
return self._bank

def get_account(self):                         # Accessor
"""Return the card identifying number"""
return self._account

def get_limit(self):                           # Accessor
"""Return current credit limit."""
return self._limit

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

https://samyzaf.com/braude/OOP/CODE/credit_card.py
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


13Object Oriented Programming 31695

Example: CreditCard Class (3)

def get_balance(self):                 # Accessor
"Return current balance."
return self._balance

def charge(self, price):               # Mutator
"""Charge given price to the card, assuming sufficient
credit limit. Return True if charge was processed;
False if charge was denied.
"""
if price + self._balance > self._limit:

return False
else:

self._balance += price
return True

def make_payment(self, amount):        # Mutator
"Process customer payment that reduces balance."
self._balance -= amount

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

https://samyzaf.com/braude/OOP/CODE/credit_card.py
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


14Object Oriented Programming 31695

A class must be viewed from two angles:

Developer View

The developer is the programmer that 

develops the class, but not necessarily the 

one who is going to use it !!!

Client View

The Client is the user which is going to use 

the class, but usually not the one who 

developed it !!!



15Object Oriented Programming 31695

 The developer is the programmer that develops the class, 

but not necessarily the one who is going to use it !

 To be able to do a good job, a developer must know

 Who are his potential clients (or users)?

 What do the clients really need?

[Responsibilities and Behaviors]

 To what information they should be exposed?

[ADT, Abstraction, Encapsulation]

 What information should be hidden from them?

[Encapsulation]

 Does the class fits well in the designated systems?

[Modularity]



16Object Oriented Programming 31695

 The client is the programmer that is going to use the class 

(usually there are many clients).

 To help the class designer, the client must define

 Who he is and what he needs?

[Responsibilities and Behaviors]

 What is the precise information that he needs to know?

[Abstraction, ADT, Encapsulation]

 In which contexts is he going to use the class?

[Modularity]



17Object Oriented Programming 31695

CreditCard Class: Client View

https://samyzaf.com/braude/OOP/CODE/credit_card.py
https://samyzaf.com/braude/OOP/CODE/credit_card.py


18Object Oriented Programming 31695

Client Code

https://samyzaf.com/braude/OOP/CODE/credit_card.py
https://samyzaf.com/braude/OOP/CODE/credit_card.py


19Object Oriented Programming 31695

 A user can create an instance of the CreditCard class using 

a syntax as:

 Internally, this results in a call to the specially named 

__init__ method that serves as the constructor of the class. 

 Its primary responsibility is to establish the state of a newly 

created credit card object with appropriate instance 

variables.

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html
https://samyzaf.com/braude/OOP/CODE/credit_card.py
https://samyzaf.com/braude/OOP/CODE/credit_card.py


20Object Oriented Programming 31695

 Python’s built-in classes provide natural semantics for many 

operators (+, *, -, /, …)

 For example, the syntax ‘a + b’ invokes addition for numeric 

types, yet concatenation for sequence types

 When defining a new class, we must consider whether a 

syntax like a + b should be defined when a or b is an 

instance of that class.

Quoted from: © 2013 Goodrich, Tamassia, Goldwasser

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002510.html


21Object Oriented Programming 31695

Operator Overloading with dunder methods

class Pluver:
def __init__(self, a, b, c):

self.a = a
self.b = b
self.c = c

def __add__(self, other):
a = self.a + other.a
b = self.b * other.b
c = max(self.c, other.c)
return Pluver(a, b, c)

def __str__(self):
return "<<%d,%d,%d>>" % (self.a, self.b, self.c)

 A dunder method is a special Python method of the form __method__ 
which is reserved for operators such as ‘+’, ‘*’, ‘==‘, and print

https://samyzaf.com/braude/OOP/CODE/pluver.py


22Object Oriented Programming 31695

Operator Overloading with dunder methods

p = Pluver(2,4,6)
q = Pluver(3,5,7)
r = p + q
print p
print q
print "%s + %s = %s" % (p,q,r)

 Examples:

# Operator overloading main advantage:
p + q + r + s
# is much better than:
add(add(add(p, q), r), s)

p + q  == __add__(p, q)

https://samyzaf.com/braude/OOP/CODE/pluver.py
https://samyzaf.com/braude/OOP/CODE/pluver.py
https://samyzaf.com/braude/OOP/CODE/pluver.py


23Object Oriented Programming 31695

 Iteration is an important concept in the design of data 

structures. 

 An iterator for a collection provides one key behavior: 

 It supports a special method named __next__ that returns the next 

element of the collection, if any, or raises a StopIteration exception 

to indicate that there are no further elements.



24Object Oriented Programming 31695

Automatic Iterators

Any class that defines a next() and __iter__ methods is 

called an iterator

Example

class Counter:
def __init__(self, start, stop):

self.current = start
self.stop = stop

def __iter__(self):
return self

def next(self):
if self.current > self.stop:

raise StopIteration
else:

current = self.current
self.current += 1
return current

https://samyzaf.com/braude/OOP/CODE/counter.py


25Object Oriented Programming 31695

Class Iterator

 The following three tests do the same thing!

def test1():
c = Counter(3,8)
print c.next()
print c.next()
print c.next()
print c.next()
print c.next()
print c.next()

def test2():
it = Counter(3, 8)
for i in it:

print i

def test3():
for i in Counter(3, 8):

print i

# Output:

3
4
5
6
7
8

https://samyzaf.com/braude/OOP/CODE/counter.py
https://samyzaf.com/braude/OOP/CODE/pluver.py


26Object Oriented Programming 31695

How the “for” statement work?

Here is what really happens behind the scenes when you 

run the for statement:

c = Counter(3, 8)
for i in c:

print i

c = Counter(3, 8)
While True:

try:
i = c.next()
print i

except StopIteration:
break

(syntactic sugar)

https://samyzaf.com/braude/OOP/CODE/counter.py
https://samyzaf.com/braude/OOP/CODE/counter.py


27Object Oriented Programming 31695

Fibonacci Iterator

 The Fibonacci class creates Fibonacci objects that can 

generate all the Fibonacci numbers up to some limit

class Fibonachi:
def __init__(self, n):

self.stop = n
self.a = 1
self.b = 1

def __iter__(self):
return self

def next(self):
c = self.a + self.b
if c > self.stop:

raise StopIteration
self.a = self.b
self.b = c
return c

https://samyzaf.com/braude/OOP/CODE/counter.py


28Object Oriented Programming 31695

Fibonacci Tests
 The following three tests are equivalent and have the same output:

def test1():
fit = Fibonachi(50)
print fit.next()
print fit.next()
print fit.next()
print fit.next()
print fit.next()
print fit.next()
print fit.next()

def test2():
fit = Fibonachi(50)
for i in fit:

print i

def test3():
for i in Fibonachi(50):

print i

https://samyzaf.com/braude/OOP/CODE/counter.py


29Object Oriented Programming 31695

When ‘list’ meets an ‘iterator’
 The list constructor can accept iterators !

 In such case it constructs a list by running the next() method until it 

gets all its elements

 It returns the list of all elements the next() generates

def test4():
print list(Fibonachi(1000))

def test5():
fit = Fibonachi(1000000)
print list(fit)[-1]

https://samyzaf.com/braude/OOP/CODE/counter.py


30Object Oriented Programming 31695

Automatic Iterators

 An automatic iterator implementation for any class that defines the 

two methods:

__len__ __getitem__

class Series:
def __init__(self, start, end, step=1):

self.start = start
self.step = step
self.length = (end - start) / step

def __getitem__(self, i):
if i >= self.length:

raise IndexError
return self.start + i * self.step

def __len__(self):
return self.length

s = Series(3,24,5)
it = iter(s)

https://samyzaf.com/braude/OOP/CODE/series.py
https://samyzaf.com/braude/OOP/CODE/pluver.py


31Object Oriented Programming 31695

Automatic Iterators

 If a class C has the two methods __getitem__ and __len__ then 

any object c of this lass can be transformed into an iterator by 

simply: it = iter(c)

s = Series(3,24, 5)
print "Length =", len(s)
print s[0]
print s[1]
print s[2]
print s[3]

s = Series(3,24, 5)
it = iter(s)
print it.next()
print it.next()
print it.next()
print it.next()

Output

Output

https://samyzaf.com/braude/OOP/CODE/series.py
https://samyzaf.com/braude/OOP/CODE/pluver.py


32Object Oriented Programming 31695

Automatic Iterators

 You get to enjoy all the benefits that a usual iterator object has!

 Note that ‘for’ and ‘list’ automatically advance s to iter(s)

s = Series(3,24, 5)
for i in s:

print i

s = Series(3,24, 5)
print list(iter(s))

for i in Series(3, 24, 5):
print i

Output

# surprise! don't need iter(s)
# list already takes care of it!
s = Series(3,24, 5)
print list(s)

Output

https://samyzaf.com/braude/OOP/CODE/series.py
https://samyzaf.com/braude/OOP/CODE/pluver.py
https://samyzaf.com/braude/OOP/CODE/series.py
https://samyzaf.com/braude/OOP/CODE/pluver.py


33Object Oriented Programming 31695

Surprise: why Series is better than range ?

 Take the time to check out why Series(0,1000000) is much more 

better than range(0,1000000) ?

def memory_usage(pid=0):
import psutil
if pid == 0:

pid = os.getpid()
p = psutil.Process(pid)
m = p.get_memory_info()
vms = "%.2fM" % (m.vms / (1024.0**2))
rss = "%.2fM" % (m.rss / (1024.0**2))
return vms, rss

https://samyzaf.com/braude/OOP/CODE/series.py


34Object Oriented Programming 31695

 dw = DirectoryWalker(directory_path) Constructor

 Create a new directory walker

 dw.next() Accessor

 Get next file in directory

 All files and subdirectories must be traversed!

 Raise StopIteration exception when done



35Object Oriented Programming 31695

 Example 1:

dw = DirectoryWalker("c:/windows")
dw.next()
c:/windows
dw.next()
c:/windows/addins
dw.next()
c:/windows/ADFS
dw.next()
c:/windows/AppCompat
dw.next()
c:/windows/apppatch
...

https://samyzaf.com/braude/OOP/CODE/dirwalker.py


36Object Oriented Programming 31695

dw = DirectoryWalker("c:/anaconda")
for filepath in dw:

if filepath[-4:] == '.exe':
print filepath

 Example 2:

https://samyzaf.com/braude/OOP/CODE/dirwalker.py


37Object Oriented Programming 31695

class DirectoryWalker:
def __init__(self, directory_path):

self.que = [directory_path]

def next(self):
if not self.que:

raise StopIteration
else:

path = self.que.pop(0)
if os.path.isdir(path):

for filename in os.listdir(path):
file_path = path + '/' + filename
self.que.append(file_path)

return path

def __iter__(self):
return self

https://samyzaf.com/braude/OOP/CODE/dirwalker.py


38Object Oriented Programming 31695

w = DirectoryWalker(d) w.queue = [d]
w.next() => d w.queue = [f1, f2, d1, d2]
w.next() => f1 w.queue = [f2, d1, d2]
w.next() => f2 w.queue = [d1, d2]
w.next() => d1 w.queue = [d2, f3, d3]
w.next() => d2 w.queue = [f3, d3, f6]
w.next() => f3 w.queue = [d3, f6]
w.next() => d3 w.queue = [f6, f4, f5]
w.next() => f6 w.queue = [f4, f5]
w.next() => f4 w.queue = [f5]
w.next() => f5 w.queue = []
w.next() => StopIteration Exception!

https://samyzaf.com/braude/OOP/CODE/dirwalker.py


39Object Oriented Programming 31695

 Today’s file trees are very large!

 Impossible to hold all the paths in a single memory list!

 Walking holds a minimal subset at every given moment, but 

able to generate all the paths!

 There’s no need to hold all the paths in memory, we only 

need to hold one path at time to do almost any computation 

on a files tree



40Object Oriented Programming 31695

 It is faster and better tuned to all operating systems and for 

most practical applications

 It is fully supported by the Python core libraries

def dir_size(directory_path):
size = 0
for path,dirs,files in os.walk(directory_path):

for f in files:
fpath = path + '/' + f
size += os.path.getsize(fpath)

return size

https://samyzaf.com/braude/OOP/CODE/dirwalker.py


41Object Oriented Programming 31695

 Fast easy way to create iterators

 Looks like a function which saves it state …

def countdown(n):
while n > 0:

yield n
n = n - 1

c = countdown(5)
print c.next()
print c.next()
print c.next()
print c.next()
print c.next()

Thanks Dave Beazley for the great

Examples:

http://www.dabeaz.com/generators/Generators.pdf

https://samyzaf.com/braude/OOP/CODE/counter2.py
https://samyzaf.com/braude/OOP/CODE/counter2.py
http://www.dabeaz.com/generators/Generators.pdf


42Object Oriented Programming 31695

 Only useful purpose is iteration

 Cannot be reused (after iteration done)

def pairs(n):
"Generator of all pairs (i,j), i<j<n"
for i in range(n):

for j in range(i,n):
yield (i,j)

def test2():
g = pairs(10000)
for i,j in g:

if i+j == 10000 and j-i == 100:
print i, j

http://www.dabeaz.com/generators/Generators.pdf

https://samyzaf.com/braude/OOP/CODE/pairs.py
https://samyzaf.com/braude/OOP/CODE/pairs.py
http://www.dabeaz.com/generators/Generators.pdf


43Object Oriented Programming 31695

 Create an iterator class Pairs that does the same thing

 Which is easier?

 How much memory is needed to create the list of all pairs 

(i,j), where i<j<n=10000?

 Exercise: generator for generating all subsets of size k of 

elements from [0,1,…,n-1]



44Object Oriented Programming 31695

def dirwalk(dirpath):
"Generate all files in directory tree"
que = [dirpath]
while que:

path = que.pop(0)
yield path
if os.path.isdir(path):

for file in os.listdir(path):
file_path = path + '/' + file
que.append(file_path)

https://samyzaf.com/braude/OOP/CODE/dirwalker3.py


45Object Oriented Programming 31695

def dirwalk(dirpath):
"Generate all files in directory tree"
for f in os.listdir(dirpath):

path = dirpath + '/' + f
yield path
if os.path.isdir(path):

for x in dirwalk(path):
yield x

https://samyzaf.com/braude/OOP/CODE/dirwalker4.py

