
1Object Oriented Programming 31695 (Samy Zafrany)

OOA, OOD, AND OOP IN PYTHON

Blackjack

http://www.mrgamez.com/double-exposure-blackjack
http://www.mrgamez.com/double-exposure-blackjack

2Object Oriented Programming 31695 (Samy Zafrany)

 This is a long term project that will keep us busy until the end of the

semester (this is also the last project for this course)

 The main goal is to put you in a real life scenario in which your mission

is not completely clear (as it is in many “industrial situations”) and you

have to work to find your way to a clear working project

 We want to develop a software for simulating Blackjack games in order

to test the quality of several playing strategies (before using them in a

Casino)

 Our software should enable us to simulate thousand (or even millions)

of real Blackjack games in a very short time in order to check if a player

strategy is any good?

 Start reading this presentation, think about the problem, and please

come up with some ideas for next class

3Object Oriented Programming 31695 (Samy Zafrany)

 After completing this project, the student should gain a basic experience

with the following major topics

 Software Modelling

 Learning how to play blackjack and then writing the whole game in software

is a complex process called “Modeling”

 Object Oriented Analysis and Design

 Before software modelling, we need to analyse and design our classes,

objects, attributes, and methods

 Common Object Oriented Programming Techniques

 Software Simulation Skills

 After implementing our model in a concrete programming language, we will

be able to rapidly simulate thousands of “virtual” games and experiment

with player strategies, statistical date, and more

 This can save a lot of time and resources compared to the effort needed for

doing such research in real Casino games

4Object Oriented Programming 31695 (Samy Zafrany)

 Description based on http://en.wikipedia.org/wiki/Blackjack

 Before software modelling, a developer is required to

understand the story and rules of the domain he is trying to

model in software

 Blackjack (also called "21" or "twenty-one") is the most

popular Casino cards game

 There are more than 100 variations of Blackjack in different

Casino houses

 We will use the simple double exposure variation in order to

make the software modelling readable and clear example

for the OOA, OOD, and OOP processes
(to make it simpler, we will not use “splits” and “double bets”)

http://en.wikipedia.org/wiki/Blackjack
https://www.youtube.com/watch?v=47qguu7ODqo

5Object Oriented Programming 31695 (Samy Zafrany)

 We will use only one deck of 52 cards:

 13 ranks = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A']

 4 suits = ['Hearts', 'Clubs', 'Spades', 'Diamonds']

 Total 52 cards

 Dealer

 The Casino representative

 Deals the cards

 Players: 2-6 (including the dealer)

 Double Exposure Variation

 To simplify, we will use the game variation in which all the dealer’s

cards are exposed, and we will not use “splits” and “double bets”

 (In many Casinos, dealer’s first card is hidden)

http://www.mrgamez.com/double-exposure-blackjack/
http://en.wikipedia.org/wiki/Blackjack
http://en.wikipedia.org/wiki/Blackjack

6Object Oriented Programming 31695 (Samy Zafrany)

 Blackjack is a comparing card game between each player and

the dealer

 It means that players compete against the dealer but not against

each other

 The object of the game is to "beat the dealer“, which can be done

in a number of ways:

 Get 21 points on your first two cards (called a blackjack), without a

dealer blackjack

 Reach a final score higher than the dealer without exceeding 21

 Or let the dealer draw additional cards until his hand exceeds 21

 All other cards are counted as the numeric value shown on the card

7Object Oriented Programming 31695 (Samy Zafrany)

 Each card in ['2', '3', '4', '5', '6', '7', '8', '9', '10'] has a value equal

to its number

 All the cards ['J', 'Q', 'K'] have value of 10

 The Ace card 'A' has two possible values: 1 or 11

(according to player’s choice)

8Object Oriented Programming 31695 (Samy Zafrany)

 At the start of the game (Open), each player is dealt an

initial two-card hand by the dealer

 The dealer is the last player to get cards

 A player and the dealer can count his or her own Ace as 1

point or 11 points

 All other cards are counted as the numeric value shown on

the card

 All dealer’s and players cards are

face-up (visible to all)

 This variation of blackjack is called

Double Exposure Variation

https://www.youtube.com/watch?v=Up9Eq2fv_-g
http://en.wikipedia.org/wiki/Blackjack
http://en.wikipedia.org/wiki/Blackjack

9Object Oriented Programming 31695 (Samy Zafrany)

 After receiving their initial two cards, players have

the option of getting a “hit”, which means taking

an additional card or a “stand” (no more cards)

 A player may ‘hit’ the dealer as many times as it

wants (as long as he’s willing to take the risk of

“busting out”)

 Scoring higher than 21 (called “busting” or “going

bust”) results in a loss of the game

 As soon as the player is satisfied with his score he

declares a ‘stand’ which means he stops getting

cards from the dealer

10Object Oriented Programming 31695 (Samy Zafrany)

 A player may win by having any final score equal to

or less than 21 if the dealer busts

 In a given game, the player or the dealer wins by

having a score of 21 or by having the highest score

that is less than 21

 If the player and dealer do not bust and have equal

scores, then no one win or loses (they both keep

their bet). This is called a “Tie” or a “Push”.
(but in most double exposure variations, the dealer wins in such case)

11Object Oriented Programming 31695 (Samy Zafrany)

 If a player holds an Ace valued as 11, the hand is called

"soft", meaning that the player cannot go bust by taking an

additional card

 11 plus the value of any other card can always be less

than or equal to 21

 Otherwise, the hand is "hard"

 The dealer must take hits unless his hand value is 17 or

more (even as a soft hand!) – in such case he must stand!

 For example, if the dealer has ['A', '6'] he cannot take more

cards ! He must declare ‘stand’ !

 Must stop and wait for other players to stand or bust

12Object Oriented Programming 31695 (Samy Zafrany)

 Players win if they do not bust and have a total that is

higher than the dealer

 The dealer loses if he busts or has a lesser hand than the

player who has not busted

 If the hand value exceeds 21 points, it busts, and all bets

on it are immediately forfeit, cards removed (the player exits

the game, but the game itself continues with the other

players)

 If the player and dealer have the same point total, this is

called a "push", and the player does not win or lose money

on that hand (in some versions, the dealer wins a “push”)

13Object Oriented Programming 31695 (Samy Zafrany)

 If a player’s hand value exceeds 21 points, it busts

 In such case, the dealer immediately removes the player

bet and cards, before proceeding to the next player!

 Since the dealer is the last one to draw cards, it may

happen that after dealing with all players, he is also bust!

 Nevertheless, he still keeps the bets of all players that went

bust before him

 This is were the Casino makes its profit …

14Object Oriented Programming 31695 (Samy Zafrany)

 The dealer never stands! Must always take a card! (until

reaching 17 and up, in which he must stop)

 If the dealer busts, all remaining player hands that did not

bust) win and the game is over

 If the dealer does not bust, each remaining bet wins if its

hand is higher than the dealer's, and loses if it is lower

 In the case of a tied score (a "push“) bets are returned to

their players with no loss or gain

15Object Oriented Programming 31695 (Samy Zafrany)

 After the two-cards round, the dealer has blackjack

 All players with less than 21 lose their bet

 Players with 21 keep their bet

 Game is over

When the dealer busts (hand value exceeded 21)

 All non-busted players win their bet

 All cards returned to deck, game is over

Dealer hand is 17-21 and each player either

committed a “stand” or busted

 Each player win/lose/draws according to his hand value

compared to the dealer hand

16Object Oriented Programming 31695 (Samy Zafrany)

 To make it simple, all bets are on 1 chip

 So we need not model bets in our software model

 Each player will have a ‘budget’ attribute (in chips)

 When he wins, we add 1 to budget

 When he loses, subtract 1

 When he draws equal,

no change to budget

17Object Oriented Programming 31695 (Samy Zafrany)

 Players have a natural order, and are numbered from 1

 The dealer starts with player 1 to the last player, and he is

the last one to get cards

 After the initial two cards,

the dealer deals with each

player (according to order)

until he stands (or busts)

 That means, each player gets

all the cards he can, until it

either stands or busts

 The dealer then proceeds to

deal with the next player

http://www.mrgamez.com/double-exposure-blackjack/
http://www.mrgamez.com/double-exposure-blackjack/

18Object Oriented Programming 31695 (Samy Zafrany)

 The reason the dealer has an advantage over the players is

because the dealers turn is always after the players

 So if the dealer busts and the player busts, the dealer still

takes the busted players money (since the player always

busts first!)

 The dealer also has the advantage by always having

enough money to stake against the players (Casino

budget is usually much higher than player budget)

 In some version of the double exposure variation, the dealer

also wins in case of a tie (“push”). We may explore this

version later if needed.

19Object Oriented Programming 31695 (Samy Zafrany)

 http://www.wikihow.com/Play-Blackjack

 http://en.wikipedia.org/wiki/Blackjack

 http://www.pagat.com/banking/blackjack.html

 http://www.maxgames.com/play/black-jack-card-game.html

 http://www.blackjack.org/rules/

 https://www.youtube.com/watch?v=Up9Eq2fv_-g

 Double Exposure Variation

 https://www.youtube.com/watch?v=47qguu7ODqo

 https://www.youtube.com/watch?v=QzzMi8RAnls

 Blackjack Online : MIT-Blackjack-Team Movie

http://www.wikihow.com/Play-Blackjack
http://en.wikipedia.org/wiki/Blackjack
http://www.pagat.com/banking/blackjack.html
http://www.maxgames.com/play/black-jack-card-game.html
http://www.blackjack.org/rules/
https://www.youtube.com/watch?v=Up9Eq2fv_-g
http://www.mrgamez.com/double-exposure-blackjack/
https://www.youtube.com/watch?v=47qguu7ODqo
https://www.youtube.com/watch?v=QzzMi8RAnls
https://www.youtube.com/watch?v=rPBwj8oMYu8#t=37

20Object Oriented Programming 31695 (Samy Zafrany)

OBJECT ORIENTED DESIGN

OOD

Card

rank
suit

value()

Player

name
budget
hand
state
strategy

hit()
stand()

http://en.wikipedia.org/wiki/Blackjack
http://en.wikipedia.org/wiki/Blackjack

21Object Oriented Programming 31695 (Samy Zafrany)

 Here are some ideas for classes we want to consider – just a

suggestion! Nothing final yet …

 Do some thinking on what classes you think we should have?

And what sort of attributes and methods should they have?

Card

rank
suit

value()

Deck

cards

shuffle()
draw_card()

Hand

cards
soft

add(card)
value()

Player

name
budget
hand
state
strategy

play()
hit()
is_broke()
is_busted

Dealer

name
budget
hand
state
strategy
deck

shuffle()

Any other classes ?????????

Game

dealer
players
log

open()
close()
run()
history()
is_finished
???

22Object Oriented Programming 31695 (Samy Zafrany)

 OOD brainstorming in class (but please start thinking about

OOD before the class)

 We need to decide what are our classes? How do they

relate to each other?

 OOP

 After OOD we need to implement our specification in some

programming language

 Naturally we will start with Python

 Your last assignment in this course is to convert our Python

implementation to another language such as Java, C++, or C# - we

will discuss this in class

23Object Oriented Programming 31695 (Samy Zafrany)

 Our main goal in this project is to test several player

strategies by simulating a few thousand games with our

software environment

 A strategy is any function f(hand1, hand2) which accepts

the player’s and dealer’s hands and returns the move to

make next (usually ‘hit’ or ‘stand’)

 The dealer’s strategy is very simple:

 If hand_value < 17:

‘hit’

 else:

‘stand’

 The players strategy is usually much more complicated and

can involve many different factors

24Object Oriented Programming 31695 (Samy Zafrany)

def strategy1(player_hand, dealer_hand):
player_value = player_hand.value()
dealer_value = dealer_hand.value()
if player_value < dealer_value:

return 'hit'
if player.hand.soft:

if player_value < 17:
return 'hit'

elif player_value > 18:
return 'stand'

else:
if random.choice([0,1]):

return 'hit'
else:

return 'stand'
else:

if player_value < 11:
return 'hit'

elif player_value > 17:
return 'stand'

else:
return 'hit'

25Object Oriented Programming 31695 (Samy Zafrany)

 Professional strategies are sometimes too hard to express

in simple functions like in the previous slide

 In most cases we need 4 different tables to describe the

strategy

 These tables can be expressed well by a Python dictionary

which we define inside a “strategy file” (look next)

 See next slides for an expert example (Michael Shackleford,

http://wizardofodds.com/site/about)

http://wizardofodds.com/site/about

26Object Oriented Programming 31695 (Samy Zafrany)

Player Strategy Example (tables 1,2)

Dealer

P
la

y
e

r

As we do not use double bets, ignore Dh

And replace it with H

http://wizardofodds.com/games/double-exposure
http://wizardofodds.com/games/double-exposure

27Object Oriented Programming 31695 (Samy Zafrany)

Player Strategy Example (tables 3,4)

S = Stand

H = Hit

Dh = Double if allowed, otherwise hit (H in our case – as we do not have double bets)

Ds = Double if allowed, otherwise stand (S in our case – we do not have splits)

S/Ds = Stand on first two cards, double if after splitting and allowed, otherwise stand

As we do not use double bets, ignore Dh and replace it with H,

Ignore Ds and replace it with S

http://wizardofodds.com/games/double-exposure
http://wizardofodds.com/games/double-exposure

28Object Oriented Programming 31695 (Samy Zafrany)

Strategy File

 A strategy file defines these 4 tables by Python dictionary and

enables us to define a strategy function based on these 4 tables

 Here is a strategy file that defines Michael Shackleford strategy

Click to download

Strategy file

Click to download

The strategy file reader

http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/PROJECTS/blackjack/strategy2.py
http://www.samyzaf.com/cgi-bin/view_file.py?file=braude/OOP/PROJECTS/blackjack/strategy2.py
http://wizardofodds.com/site/about
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=OOP/PROJECTS/blackjack/strategy2.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=OOP/PROJECTS/blackjack/strategy_reader.py

29Object Oriented Programming 31695 (Samy Zafrany)

"The Simplified Basic Strategy"
def strategy3(player_hand, dealer_hand):

pvalue = player_hand.value()
dvalue = dealer_hand.value()
psoft = player_hand.soft
dsoft = dealer_hand.soft
phard = not player_hand.soft
dhard = not dealer_hand.soft

if 17 <= dvalue <= 21: # Dealer pat hand
if pvalue < dvalue:

return 'hit'
elif 7 <= dvalue <= 11:

if pvalue <= dvalue or 12 <= pvalue <= 15:
return 'hit'

elif dvalue < 7:
if pvalue < 12:

return 'hit'
elif psoft and pvalue < 16:

return 'hit'

if dhard and 12 <= dvalue <= 16: # Dealer "stiff" hand
if pvalue < dvalue:

return 'hit'
elif psoft and pvalue <= 16:

return 'hit'

if dsoft and 12 <= dvalue <= 16:
if pvalue <= 12:

return 'hit'
elif psoft and pvalue <= 18:

return 'hit'

return 'stand'

Strategy 3:

"The Simplified Basic Strategy"

Copied from the "Big Book of Blackjack" By Arnold Snyder

http://www.amazon.com/Big-Book-Blackjack-Arnold-Snyder/dp/1580421555

http://www.amazon.com/Big-Book-Blackjack-Arnold-Snyder/dp/1580421555
http://www.amazon.com/Big-Book-Blackjack-Arnold-Snyder/dp/1580421555
http://www.amazon.com/Big-Book-Blackjack-Arnold-Snyder/dp/1580421555

30Object Oriented Programming 31695 (Samy Zafrany)

OBJECT ORIENTED PROGRAMMING

IN PYTHON

OOP

http://en.wikipedia.org/wiki/Blackjack
http://en.wikipedia.org/wiki/Blackjack

31Object Oriented Programming 31695 (Samy Zafrany)

 Remember our long term goal: create a convenient software

environment for simulating thousands of Blackjack games in

order to test player strategies (so we know how good they are

before we use them in a Casino …)

 Please start by designing a few more classes toward this goal

 We will complete the work in the course laboratory sessions (but

you must be prepared with a few classes of yours!

So get started …)

 To get you started, here are client tests and two suggestion for

classes that give you a taste for what we are trying to do

 Remember that writing tests (many of them) before you write

classes can actually help you make better design choices!

32Object Oriented Programming 31695 (Samy Zafrany)

ranks = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A']
suits = ['Hearts', 'Clubs', 'Spades', 'Diamonds']

class Card:
def __init__(self, rank, suit):

self.rank = rank
self.suit = suit

def value(self):
if self.rank in ['J', 'Q', 'K']:

return 10
elif self.rank == 'A':

return 1,11
else:

return int(self.rank)

def __str__(self):
return self.rank + '-' + self.suit

33Object Oriented Programming 31695 (Samy Zafrany)

class Deck:
def __init__(self):

self.cards = []
for rank in ranks:

for suit in suits:
c = Card(rank, suit)
self.cards.append(c)

def shuffle(self):
random.shuffle(self.cards)

def draw_card(self):
if not self.cards:

raise Exception("No more cards: empty deck!")
card = self.cards.pop()
return card

def __str__(self):
cards = []
for c in self.cards:

cards.append(str(c))
return str(cards)

34Object Oriented Programming 31695 (Samy Zafrany)

def test1():
card1 = Card('9', 'Spades')
card2 = Card('Q', 'Hearts')
card3 = Card('9', 'Hearts')
card4 = Card('K', 'Diamonds')
print card1, card2, card3, card4

35Object Oriented Programming 31695 (Samy Zafrany)

def test2():
deck = Deck()
print '--------- Before Shuffle --------'
print deck
deck.shuffle()
print '--------- After Shuffle --------'
print deck

36Object Oriented Programming 31695 (Samy Zafrany)

def test3():
deck = Deck()
deck.shuffle()
c1 = deck.draw_card()
c2 = deck.draw_card()
c3 = deck.draw_card()
h = Hand([c1, c2, c3])
c4 = deck.draw_card()
h.add(c4)
print h
print h.value()

37Object Oriented Programming 31695 (Samy Zafrany)

def random_hand():
"Random hand of 2 to 5 cards"
deck = Deck()
deck.shuffle()
n = random.randint(2,5)
cards = []
for i in range(n):

c = deck.draw_card()
cards.append(c)

return Hand(cards)

38Object Oriented Programming 31695 (Samy Zafrany)

def test5():
dealer = Dealer('Eli', 10000)
a = Player('Alice', 100, strategy1)
b = Player('Bob', 200, strategy2)
c = Player('Clod', 100, strategy3)
d = Player('Dian', 250, strategy4)

print "Dealer:", dealer.name
print "Players:", a.name, b.name, c.name, d.name

players = [a, b, c, d]
g = Game(dealer, players)
g.run()
print g.log # should print all game history

39Object Oriented Programming 31695 (Samy Zafrany)

def test6():
strategy2 = read_strategy_file('strategy2.py')
dealer = Dealer('Eli', 10000)
a = Player('Alice', 500, strategy2)
b = Player('Bob', 500, strategy1)
c = Player('Clod', 500, strategy1)

for i in range(3000):
g = Game(dealer, [a, b, c])
g.run()

print a.name, a.budget # which budget is higher?
print b.name, b.budget
print c.name, c.budget

Which is better? strategy1 or strategy2 ???

40Object Oriented Programming 31695 (Samy Zafrany)

def test7():
import matplotlib.pyplot as plt
strategy2 = read_strategy_file('strategy2.py')
dealer = Dealer('Eli', 10000)
a = Player('Alice', 500, strategy2)
b = Player('Bob', 500, strategy1)
c = Player('Clod', 500, strategy1)

a_init_budget = a.budget
b_init_budget = b.budget

a_budgets = []
b_budgets = []
for i in range(3000):

g = Game(dealer, [a, b, c])
g.run()
a_budgets.append(a.budget)
b_budgets.append(b.budget)

Which is better? strategy1 or strategy2 ???

plt.subplot(211)
plt.plot(range(3000), a_budgets)
plt.grid(True)
plt.title("Player=%s, %s, budget=%d" %

(a.name, "strategy2", a_init_budget))
plt.xlabel('Games')
plt.ylabel('Budget')

plt.subplot(212)
plt.plot(range(3000), b_budgets)
plt.grid(True)
plt.title("Player=%s, %s, budget=%d" %

(b.name, "strategy1", b_init_budget))
plt.xlabel('Games')
plt.ylabel('Budget')

plt.tight_layout()
plt.show()

41Object Oriented Programming 31695 (Samy Zafrany)

Simulation of 3000 Games (1)
Alice is using strategy2

Bob is using strategy1

42Object Oriented Programming 31695 (Samy Zafrany)

Simulation of 3000 Games (2)

Alice is using strategy2

Bob is using strategy1

If budget is 500K

(one bet = 1K)

Then it takes 10 hours

to make 50K

(assuming 100 games

per hour)

In fact, Alice can start

with a much smaller

budget: 30K

As she does not lose

more than 20K for the

first 3000 games !!

But has a potential to

win 50K !

Warning!!! this is just

a simplistic example!

Do not try it in

a Casino ! 

43Object Oriented Programming 31695 (Samy Zafrany)

Simulation of 1000 Games, 3 strategies

Alice: strategy1

Bob: strategy2

Clod: strategy3

Budget: 500K

Games: 1000

100 games per hour

44Object Oriented Programming 31695 (Samy Zafrany)

 The previous experiments are useful for comparing existing

strategies

 How about playing millions of games and improving our

best strategy?

 After playing millions of games, we may find that our best

strategy (strategy2) has some defects and can be fixed by

some small changes to the tables

 Probabilistic strategies: after many games we can learn

things such as: when player total is soft 18 and dealer is

soft 15, then play should hit at probability 0.76 and stand in

probability 0.26. These are probabilistic strategies

 Ideas for a future final project …

