
1Data Structures and Algorithms 31632

GRAPHS

Project 6

2Data Structures and Algorithms 31632

 You will need to download following code to do the

exercises in this project:

graphs.zip

 After extracting this archive you will find several graph files

from our textbook materials, and the old eda module (as a

subdirectory) for drawing

 This files may be updated from time to time, so be ready to

refresh your copy when notified (a Moodle message will be

sent to all students in case of update)

https://samyzaf.com/braude/DSAL/projects/proj6/graphs.zip

3Data Structures and Algorithms 31632

 Download the file graph1.dat

 It consists of two lines:

 List of vertices (points on canvas plain)

 List of edges (lines between two points)

 Parse this file, create the graph, and draw it:

https://samyzaf.com/braude/DSAL/projects/proj6/data/graph1.dat

4Data Structures and Algorithms 31632

 To be able to parse the file like graphs1.dat you will need

the following function:

Parse the list of integers inside
a string like '(10,20)' or '((10,20),(30,40))'

def parse_ints(s):
t = re.sub('[(),]', ' ', s)
ints = [int(x) for x in t.split()]
return ints

https://samyzaf.com/braude/DSAL/projects/proj6/data/graph1.dat
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table1.c

5Data Structures and Algorithms 31632

 The file data.zip consists with 12 graph files which you will

use in this project. Click it to download!

 All the graphs are planar graphs:

 Vertices are points on a two dimensional plane

 Edges are line segments between two points

 We will use the names graph1, graph2, graph3, …, to refer

to the graphs that are generated by these files

 You can generate two types of graphs from this files

 Undirected graphs (if you ignore the direction)

 Directed graphs

https://samyzaf.com/braude/DSAL/projects/proj6/data.zip

6Data Structures and Algorithms 31632

 Find a spanning tree for graph1 that start with the point (278,454)

 Hint: look at the function DFS at the file: dfs.py

 Try to draw your spanning tree by coloring its edges green

 Can you see more than one spanning tree?

 Count total length of edges in tree (write code). Hint: Use line length method.

 Use lecture notes Part_07_dfs.pdf to read about spanning trees

 Check your solution also on graph2, graph3, …

https://samyzaf.com/braude/DSAL/notes/Part_07_dfs.pdf

7Data Structures and Algorithms 31632

 Here is a Spanning Tree solution for graph4 that starts with the point (727,380)

8Data Structures and Algorithms 31632

 Create and Draw graph11.dat

 This is a disconnected graph, so it consists of several connectivity components

 Find the connectivity component that contains the point P(215,85)

 You need to write an algorithm for solving this problem

 Here is an example of how a disconnected graph looks like:

9Data Structures and Algorithms 31632

 Create and Draw graph12.dat as a directed graph!

 A cycle is a list of 2 or more vertices v[0], v[1], …, v[n], such that v[i] is

connected by an edge to v[i+1], and v[n] is connected to v[0].

 Write a program for finding all cycles in graph12:

10Data Structures and Algorithms 31632

 Read the file dijksta.py and try to understand Dijkstra’s

algorithm for finding all shortest paths from a source vertex

src to all other vertices in the graph

11Data Structures and Algorithms 31632

 Compute the shortest path from the point P(108,99) to point

P(628,536) in graph4 (add distance element to graph!)

12Data Structures and Algorithms 31632

 After solving problem 3, try to draw your solution like in the

following graph5.dat, source=P(77,62), target=P(705,538)

13Data Structures and Algorithms 31632

 Create and draw graph6 (make sure to add distance to each edge!)

 Find the shortest path that starts and ends in P(66,78) and visits the cities:

P(675,86), P(694,510), P(79,524) – in whatever order is required to make the

trip as short as possible

14Data Structures and Algorithms 31632

1. Draw a simple, connected, directed graph with 8 vertices

and 16 edges such that the in-degree and out-degree of

each vertex is 2. Show that there is a single (non-simple)

cycle that includes all the edges of your graph, that is, you

can trace all the edges in their respective directions

without ever lifting your pencil. (Such a cycle is called an

Euler tour.)

2. Suppose we represent a graph G having n vertices and m

edges with the edge list structure. Why, in this case, does

the insert_vertex method run in O(1) time while the

remove_vertex method runs in O(m) time?

15Data Structures and Algorithms 31632

3. Bob loves foreign languages and wants to plan his course schedule for

the following years. He is interested in the following nine language

courses: LA15, LA16, LA22, LA31, LA32, LA126, LA127, LA141, and

LA169.

 The course prerequisites are:

 LA15: (none)

 LA16: LA15

 LA22: (none)

 LA31: LA15

 LA32: LA16, LA31

 LA126: LA22, LA32

 LA127: LA16

 LA141: LA22, LA16

 LA169: LA32

 In what order can Bob take these courses, respecting the prerequisites?

16Data Structures and Algorithms 31632

4. Draw a simple, connected, weighted graph with 8 vertices

and 16 edges, each with unique edge weights. Identify one

vertex as a “start” vertex and illustrate a running of

Dijkstra’s algorithm on this graph

5. Implement an algorithm that returns a cycle in a directed

graph G, if one exists

6. Given an undirected graph G. Write a function

component(v) which returns the connectivity component

to which the vertex v belongs to

7. Test the solution to the previous problem on the graph:

V = [0, 1, 2, 3, 4, …, 300]

E = {(x,y) | (x-y)%7 == 0}

Compute component(3)

17Data Structures and Algorithms 31632

8. A graph G is bipartite if its vertices can be partitioned into

two sets X and Y such that every edge in G has one end

vertex in X and the other in Y.

Design and analyze an efficient algorithm for determining if

an undirected graph G is bipartite (without knowing the

sets X and Y in advance).

9. An Euler tour of a directed graph G with n vertices and m

edges is a cycle that traverses each edge of G exactly

once according to its direction. Such a tour always exists if

G is connected and the in-degree equals the out-

degree of each vertex in G. Describe an O(n+m)-time

algorithm for finding an Euler tour of such a directed graph

G. Use Google to get help.

