
Binary Search Trees 1

Binary Search Trees

6

9 2

4 1 8

<

>

=

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search Trees 2

Ordered Maps

Keys are assumed to come from a total

order.

Items are stored in order by their keys

This allows us to support nearest

neighbor queries:

Item with largest key less than or equal to k

Item with smallest key greater than or equal

to k

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search Trees 3

Binary Search
Binary search can perform nearest neighbor queries on an
ordered map that is implemented with an array, sorted by key

 similar to the high-low children’s game

 at each step, the number of candidate items is halved

 terminates after O(log n) steps

Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

m l h

m l h

m l h

l=m =h

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search Trees 4

Search Tables
A search table is an ordered map implemented by means of a
sorted sequence
 We store the items in an array-based sequence, sorted by key

 We use an external comparator for the keys

Performance:
 Searches take O(log n) time, using binary search

 Inserting a new item takes O(n) time, since in the worst case we
have to shift n/2 items to make room for the new item

 Removing an item takes O(n) time, since in the worst case we have
to shift n/2 items to compact the items after the removal

The lookup table is effective only for ordered maps of small size
or for maps on which searches are the most common
operations, while insertions and removals are rarely performed
(e.g., credit card authorizations)

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search Trees 5

Sorted Map Operations

© 2013 Goodrich, Tamassia, Goldwasser

Standard Map methods:

The sorted map ADT includes additional
functionality, guaranteeing that an iteration
reports keys in sorted order, and supporting
additional searches such as find_gt(k) and
find_range(start, stop).

Binary Search Trees 6

Binary Search Trees
A binary search tree is a
binary tree storing keys
(or key-value items) at
its nodes and satisfying
the following property:
 Let u, v, and w be three

nodes such that u is in
the left subtree of v and
w is in the right subtree
of v. We have
key(u)  key(v)  key(w)

External nodes do not
store items, instead we
consider them as None

An inorder traversal of a
binary search trees
visits the keys in
increasing order

6

9 2

4 1 8

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search Trees 7

Search

To search for a key k, we

trace a downward path
starting at the root

The next node visited
depends on the comparison
of k with the key of the

current node

If we reach a leaf, the key
is not found

Example: find(4):

 Call TreeSearch(4,root)

The algorithms for nearest
neighbor queries are
similar

6

9 2

4 1 8

<

>

=

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search Trees 8

Insertion

To perform operation
put(k, o), we search for key
k (using TreeSearch)

Assume k is not already in
the tree, and let w be the
(None) leaf reached by the
search

We insert k at node w and
expand w into an internal
node

Example: insert 5

6

9 2

4 1 8

6

9 2

4 1 8

5

<

>

>

w

w

© 2013 Goodrich, Tamassia, Goldwasser

Insertion Pseudo-code

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 9

Binary Search Trees 10

Deletion

To perform operation
remove(k), we search for
key k

Assume key k is in the tree,
and let let v be the node
storing k

If node v has a (None) leaf
child w, we remove v and w

from the tree with operation
removeExternal(w), which
removes w and its parent

Example: remove 4

6

9 2

4 1 8

5

v

w

6

9 2

5 1 8

<

>

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search Trees 11

Deletion (cont.)

We consider the case where
the key k to be removed is
stored at a node v whose

children are both internal

 we find the internal node w

that follows v in an inorder

traversal

 we copy key(w) into node v

 we remove node w and its
left child z (which must be a

leaf) by means of operation
removeExternal(z)

Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search Trees 12

Performance
Consider an ordered
map with n items

implemented by means
of a binary search tree
of height h

 the space used is O(n)

 Search and update
methods take O(h) time

The height h is O(n) in

the worst case and
O(log n) in the best case

© 2013 Goodrich, Tamassia, Goldwasser

Python Implementation

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 13

Python Implementation, Part 2

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 14

Python Implementation, Part 3

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 15

Python Implementation, Part 4

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 16

Python Implementation, end

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 17

