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Ordered Maps 

Keys are assumed to come from a total 

order. 

Items are stored in order by their keys 

This allows us to support nearest 

neighbor queries: 

Item with largest key less than or equal to k 

Item with smallest key greater than or equal 

to k 
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Binary Search 
Binary search can perform nearest neighbor queries on an 
ordered map that is implemented with an array, sorted by key 

 similar to the high-low children’s game 

 at each step, the number of candidate items is halved 

 terminates after O(log n) steps 

Example: find(7) 
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Search Tables 
A search table is an ordered map implemented by means of a 
sorted sequence 
 We store the items in an array-based sequence, sorted by key 

 We use an external comparator for the keys 

Performance: 
 Searches take O(log n) time, using binary search 

 Inserting a new item takes O(n) time, since in the worst case we 
have to shift n/2 items to make room for the new item 

 Removing an item takes O(n) time, since in the worst case we have 
to shift n/2 items to compact the items after the removal 

The lookup table is effective only for ordered maps of small size 
or for maps on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations) 
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Sorted Map Operations 
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Standard Map methods: 

 

 

 

 

The sorted map ADT includes additional 
functionality, guaranteeing that an iteration 
reports keys in sorted order, and supporting 
additional searches such as find_gt(k) and 
find_range(start, stop). 
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Binary Search Trees 
A binary search tree is a 
binary tree storing keys 
(or key-value items) at 
its nodes and satisfying 
the following property: 
 Let u, v, and w be three 

nodes such that u is in 
the left subtree of v and 
w is in the right subtree 
of v. We have  
key(u)  key(v)  key(w) 

External nodes do not 
store items, instead we 
consider them as None 

An inorder traversal of a 
binary search trees 
visits the keys in 
increasing order 
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Search 

To search for a key k, we 

trace a downward path 
starting at the root 

The next node visited 
depends on the comparison 
of k with the key of the 

current node 

If we reach a leaf, the key 
is not found 

Example: find(4): 

 Call TreeSearch(4,root) 

The algorithms for nearest 
neighbor queries are 
similar 
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Insertion 

To perform operation 
put(k, o), we search for key 
k (using TreeSearch) 

Assume k is not already in 
the tree, and let w be the 
(None) leaf reached by the 
search 

We insert k at node w and 
expand w into an internal 
node 

Example: insert 5 
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Insertion Pseudo-code 
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Deletion 

To perform operation 
remove(k), we search for 
key k 

Assume key k is in the tree, 
and let let v be the node 
storing k 

If node v has a (None) leaf 
child w, we remove v and w 

from the tree with operation 
removeExternal(w), which 
removes w and its parent 

Example: remove 4 
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Deletion (cont.) 

We consider the case where 
the key k to be removed is 
stored at a node v whose 

children are both internal 

 we find the internal node w 

that follows v in an inorder 

traversal 

 we copy key(w) into node v 

 we remove node w and its 
left child z (which must be a 

leaf) by means of operation 
removeExternal(z) 

Example: remove 3 
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Performance 
Consider an ordered 
map with n items 

implemented by means 
of a binary search tree 
of height h 

 the space used is O(n) 

 Search and update 
methods take O(h) time 

The height h is O(n) in 

the worst case and 
O(log n) in the best case 
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Python Implementation 
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Python Implementation, Part 2 
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Python Implementation, Part 3 
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Python Implementation, Part 4 
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Python Implementation, end 
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