Binary Search Trees

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees

N

Ordered Maps

N

#Keys are assumed to come from a total
order.

#Items are stored in order by their keys
#This allows us to support nearest
neighbor queries:
+ Item with largest key less than or equal to k

+ Item with smallest key greater than or equal
to k

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 2

Binary Search

Binary search can perform nearest neighbor queries on an
ordered map that is implemented with an array, sorted by key

= Similar to the high-low children’s game
= at each step, the number of candidate items is halved
= terminates after O(log n) steps

Example: find(7)

N

-0 OO0
N oS oS 0N cHONCEOR DSOS CRCRT
0000 0O

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 3

Search Tables \@

A search table is an ordered map implemented by means of a
sorted sequence
= We store the items in an array-based sequence, sorted by key
= We use an external comparator for the keys

Performance:
= Searches take O(log n) time, using binary search

= Inserting a new item takes O(n) time, since in the worst case we
have to shift n/2 items to make room for the new item

= Removing an item takes O(n) time, since in the worst case we have
to shift n/2 items to compact the items after the removal
#® The lookup table is effective only for ordered maps of small size
or for maps on which searches are the most common
operations, while insertions and removals are rarely performed
(e.qg., credit card authorizations)

N

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 4

Sorted Map Operations

" @ Standard Map methods:

M[k]: Return the value v associated with key k in map M, if one exists;
otherwise raise a KeyError; implemented with __getitem __ method.

N

M[k] = v: Associate value v with key k in map M, replacing the existing value
if the map already contains an item with key equal to k; implemented
with __setitem__ method.

del M[k]: Remove from map M the item with key equal to k; if M has no such
item, then raise a KeyError; implemented with __delitem __ method.

The sorted map ADT includes additional
functionality, guaranteeing that an iteration
reports keys in sorted order, and supporting
additional searches such as find_gt(k) and
find_range(start, stop).

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 5

j Binary Search Trees

N

A binary search tree is a & An inorder t c
binary tree storing keys HHROFIERLraversa: Of-a
(or key-value items) at binary search trees
its nodes and satisfying visits the keys in
the following property: increasing order

s Let u, v, and w be three
nodes such that u is in
the left subtree of v and
w is in the right subtree

of v. We have

key(u) < key(v) < key(w)
External nodes do not

store items, instead we
consider them as None

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees

Search

To search for a key k, we
trace a downward path
starting at the root

The next node visited
depends on the comparison
of k with the key of the
current node

If we reach a leaf, the key
is not found
#® Example: find(4):
= Call TreeSearch(4,root)
The algorithms for nearest

neighbor queries are
similar

N

Algorithm TreeSearch(T, p, k):
if k==p.key() then

return p {successful search}
else if k < p.key() and T.left(p) is not None then

return TreeSearch(T, T.left(p), k) {recur on left subtree }
else if k > p.key() and T.right(p) is not None then

return TreeSearch(T, T.right(p), k) {recur on right subtree}
return p {unsuccessful search}

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 7

Insertion

To perform operation
put(k, 0), we search for key
k (using TreeSearch)

N

#® Assume k is not already in
the tree, and let w be the
(None) leaf reached by the
search

We insert k at node w and
expand w into an internal
node

#® Example: insert 5

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 8

Insertion Pseudo-code

N

Algorithm Treelnsert(T, k, v):
Input: A search key k to be associated with value v

p = TreeSearch(T, T.root(),k)
if k == p.key() then
Set p’s value to v
else if k < p.key() then
add node with item (k,v) as left child of p
else
add node with item (k,v) as right child of p

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees

Deletion

To perform operation
remove(k), we search for
key k

N

Assume key Kk is in the tree,

and let let v be the node
storing k

If node v has a (None) leaf
child w, we remove v and w
from the tree with operation
removeExternal(w), which
removes w and its parent

Example: remove 4

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 10

Deletion (cont.)

N

We consider the case where
the key k to be removed is
stored at a node v whose
children are both internal

m we find the internal node w

that follows v in an inorder

traversal
= we copy key(w) into node v

= we remove node w and its
left child z (which must be a \

leaf) by means of operation
removeExternal(z) 8

#® Example: remove 3

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees 11

Performance

N

map with n items

of height h

= Search and update
methods take O(h)

Consider an ordered

implemented by means
of a binary search tree

= the space used is O(n)

time

The height h is O(n) in

the worst case and

O(log n) in the best case

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search Trees

12

Python Implementation

1 class TreeMap(LinkedBinaryTree, MapBase):
2 """Sorted map implementation using a binary search tree."""
/] 3
U 4 # override Position class
5 class Position(LinkedBinaryTree.Position):
6 def key(self):
7 """ Return key of map's key-value pair."""
8 return self.element()._key
9
10 def value(self):
11 """ Return value of map's key-value pair."""
12 return self.element()._value
13
14 # nonpublic utilities
15 def _subtree_search(self, p, k):
16 """ Return Position of p's subtree having key k, or last node searched.”""
17 if k == p.key(): # found match
18 return p
19 elif k < p.key(): # search left subtree
20 if self.left(p) is not None:
21 return self._subtree_search(self.left(p), k)
22 else: # search right subtree
23 if self.right(p) is not None:
24 return self._subtree_search(self right(p), k)
25 return p # unsucessful search
26
27 def _subtree_first_position(self, p):
28 """ Return Position of first item in subtree rooted at p."""
29 walk = p
30 while self.left(walk) is not None: # keep walking left
31 walk = self.left(walk)
32 return walk
33
34 def _subtree_last_position(self, p):
35 """ Return Position of last item in subtree rooted at p."""
36 walk = p
37 while self.right(walk) is not None: # keep walking right
38 walk = self.right(walk)
39 return walk

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees

Python Implementatlon Part 2

40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

N
\J

def flrst(self
" Return the first Position in the tree (or None if empty).””
return self._subtree_first_position(self.root()) if len(self) > 0 else None

def last(self):
""" Return the last Position in the tree (or None if empty).
return self._subtree_last-position(self.root()) if len(self) > 0 else None

def before(self, p):
""" Return the Position just before p in the natural order.

Return None if p is the first position.
self._validate(p) # inherited from LinkedBinary Tree
if self.left(p):
return self._subtree_last_position(self.left(p))
else:
walk upward
walk = p
above = self.parent(walk)
while above is not None and walk == self left(above):
walk = above
above = self.parent(walk)
return above

def after(self, p):
""" Return the Position just after p in the natural order.

Return None if p is the last position.
symmetric to before(p)
def find_position(self, k):
""" Return position with key k, or else neighbor (or None if empty).

if self.is_empty():
return None

else:
p = self._subtree_search(self.root(), k)
self._rebalance_access(p) # hook for balanced tree subclasses
return p

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees

14

Python Implementation, Part 3

80 def find_min(self):

81 """ Return (key,value) pair with minimum key (or None if empty).”""
/ 82 if self.is_empty():
(W 83 return None
84 else:
85 p = self first()
86 return (p.key(), p.value())
87
88 def find_ge(self, k):
89 """ Return (key,value) pair with least key greater than or equal to k.
90
91 Return None if there does not exist such a key.
92
93 if self.is_empty():
94 return None
95 else:
96 p = self find_position(k) # may not find exact match
97 if p.key() < k: # p's key is too small
98 p = self.after(p)
99 return (p.key(), p.value()) if p is not None else None
100
101 def find_range(self, start, stop):
102 """ Iterate all (key,value) pairs such that start <= key < stop.
103
104 If start is None, iteration begins with minimum key of map.
105 If stop is None, iteration continues through the maximum key of map.
107 if not self.is.empty():
108 if start is None:
109 p = self first()
110 else:
111 # we initialize p with logic similar to find_ge
112 p = self.find_position(start)
113 if p.key() < start:
114 p = self.after(p)
115 while p is not None and (stop is None or p.key() < stop):
116 yield (p.key(), p.value())
117 p = self.after(p)

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees

Python Implementation, Part 4

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

N
\J

def __getitem __(self, k):
""" Return value associated with key k (raise KeyError if not found)
if self.is_empty():
raise KeyError("Key Error: ' + repr(k))

else:
p = self._subtree_search(self.root(), k)
self._rebalance_access(p) # hook for balanced tree subclasses
if k 1= p.key():

raise KeyError('Key Error: ' + repr(k))
return p.value()

def __setitem __(self, k, v):
""" Assign value v to key k, overwriting existing value if present.
if self.is_empty():

leaf = self._add_root(self._Item(k,v)) # from LinkedBinaryTree
else:

p = self._subtree_search(self.root(), k)

if p.key() ==
p.element()._value = v # replace existing item's value
self._rebalance_access(p) # hook for balanced tree subclasses
return

else:

item = self._ltem(k,v)
if p.key() < k:
leaf = self._add_right(p, item) # inherited from LinkedBinaryTree

else:
leaf = self._add_left(p, item) # inherited from LinkedBinaryTree
self._rebalance_insert(leaf) # hook for balanced tree subclasses

def __iter__(self):
""" Generate an iteration of all keys in the map in order.”""
p = self first()
while p is not None:

yield p.key()
p = self.after(p)

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees

16

Python Implementation, end

153
G—— 154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

def delete(self, p):
""" Remove the item at given Position.
self._validate(p) # inherited from LinkedBinaryTree
if self.left(p) and self.right(p): # p has two children
replacement = self._subtree_last_position(self.left(p))
self._replace(p, replacement.element()) # from LinkedBinary Tree
p = replacement
now p has at most one child
parent = self.parent(p)
self._delete(p) # inherited from LinkedBinaryTree
self._rebalance_delete(parent) # if root deleted, parent is None

e

def __delitem __(self, k):
""" Remove item associated with key k (raise KeyError if not found)
if not self.is_.empty():
p = self._subtree_search(self.root(), k)

if k == p.key():

self.delete(p) # rely on positional version

return # successful deletion complete
self._rebalance_access(p) # hook for balanced tree subclasses

raise KeyError("Key Error: ' + repr(k))

© 2013 Goodrich, Tamassia, Goldwasser Binary Search Trees

17

