
ד"תשע/שבט/ט"י

1

1 Data Structures and Algorithms 31632

SLIDES THAT ARE ALLOWED TO BE

USED FOR FINAL EXAMINATIONS

Data Structures and

Algorithms Exam Slides

2 Data Structures and Algorithms 31632

http://brd4.braude.ac.il/~samyz/DSAL

http://tinyurl.com/samyz/dsal/index.html

Both sites are identical and synchronized

Use the second if the first is down

http://brd4.braude.ac.il/~samyz/DSAL
http://brd4.braude.ac.il/~samyz/DSAL
http://brd4.braude.ac.il/~samyz/DSAL
http://tinyurl.com/samyz/dsal/index.html

ד"תשע/שבט/ט"י

2

3 Data Structures and Algorithms 31632

DATA STRUCTURES

AND

ALGORITHMS

Introduction to:

4 Data Structures and Algorithms 31632

 Systematic methods for organizing information in a

computer

 A data type consists of the values it represents and the

operations defined upon it

 In the C programming language, a data type is usually

represented by the struct concept.

 But the struct represents only the data type values and

does not describe what kind of operations can be applied on

the data type

 In object oriented languages, the class concept extends the

struct concept by also adding methods that can be applied

on a data type

ד"תשע/שבט/ט"י

3

5 Data Structures and Algorithms 31632

 Data types may be viewed in several ways:

 As abstract entities

 As concrete implementations

 For example, there are many ways to represent a floating number like

x=5.2 – here is one common way to do it (32 bit arch):

5.2 = 5 + 0.2 = 101 + 0.0011001100110011001100110011…

 = 101.0011001100110011001100110011…

 = + 1.010011001100110011001100110011… * 2^2

exp = e +127

See comment

Below slide

6 Data Structures and Algorithms 31632

 Note that some data types may not have a fully accurate

representation!

 For example, the float number x=5.2 is not really equal to its binary

representation above! Moreover, it will have a different value in a 64

bit architecture!

 This is however will not concern us in this course as we’re more

concerned with the abstract view of data types!

 Binary representations of data types is the business of other courses

and not ours!

 We do however need to be aware of the basic ideas of

representations in order to be able to do realistic analysis of

algorithms, estimate input and output sizes, estimate space and run

time figures

ד"תשע/שבט/ט"י

4

7 Data Structures and Algorithms 31632

 An abstract data type (ADT) is a programmer-defined data

type that specifies a set of data values and a collection of

well-defined operations that can be performed on those

values

 Only the formal definition of the data type is important and

NOT how it is implemented in binary form or in hardware

 This is sometimes called:

“Separation of Interface and Implementation”

 Information Hiding – how the data is represented and how

the operations are implemented is completely irrelevant

when we define a new Abstract Data Type (ADT) !

8 Data Structures and Algorithms 31632

Example: String ADT

String Data Type:
 An string of characters like
 s = "Hello World"
 s = "Guido Van Rossum, 1993"

Operations:
 upper(s) All characters to upper case
 lower(s) All characters to lower case
 find(s,w) Find a word w in s (return index)
 replace(s,w1,w2) Replace sub word w1 with w2

s = "Hello World"
upper(s) = "HELLO WORLD"
lower(s) = "hello world"
find(s, "Wo") = 6
replace(s, "lo", " NEW") = "Hel NEW World"

EXAMPLE CODE:

ד"תשע/שבט/ט"י

5

9 Data Structures and Algorithms 31632

 Note that the term “string of characters” does not imply

anything about its implementation (how English characters

are represented?)

 It can be implemented as a C array of characters

terminated by a NULL

 It can be implemented like a Java or C++ String object

 We may even decide to encode and compress the string if it

size is too large

 We can decide to break each string to chunks of 4K in

different memory locations and keep a central table for

accessing these chunks, etc …

10 Data Structures and Algorithms 31632

 Similarly, nothing on how the find() and replace()

algorithms should be implemented is mentioned!

 All we care is about how we Interface with the string data

type? (How to do? instead of how it is done?)

 All implementation issues are irrelevant to the ADT

specification!

ד"תשע/שבט/ט"י

6

11 Data Structures and Algorithms 31632

 After defining an ADT we will proceed to the second

part of our course: ALGORITHMS

 Named after the mathematician Muḥammad ibn Mūsā

al-Khwārizmī (Bagdad 780-850) which invented the

concept and the first mathematical algorithms

(including an algorithm for solving quadratic equations)

 ALGORITHM:

 An effective method expressed as a finite list

of well-defined instructions for calculating a function

(Wikipedia)

 Simply put, a data structure is a systematic way of

organizing and accessing data, and an algorithm is a

step-by-step procedure for performing some task in a

finite amount of time (Goodrich/Tamassia/Goldwasser

book)

 أبو عبد الله محمد بن موسى الخوارزمي

12 Data Structures and Algorithms 31632

 GCD = Greatest Common Divisor

 Perhaps one of the most famous algorithms in history

 Formulated by Euclid around 300 BC (without knowing the algorithm concept)

 Problem: given two integers A and B, find the largest integer G which divides

both A and B

 Here is the most naïve way to solve the problem:

def gcd1(a, b):
 if a == 0: return b
 if b == 0: return a
 m = min(a,b)
 greatest = 1
 d = 1
 while d <= m:
 if a%d == 0 and b%d == 0:
 greatest = d
 d += 1
 return greatest

http://www.dace.co.uk/al_khwarizmi.htm
http://en.wikipedia.org/wiki/Khwarizmi#Biography
http://en.wikipedia.org/wiki/Khwarizmi#Biography
http://en.wikipedia.org/wiki/Khwarizmi#Biography
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/gcd1.py

ד"תשע/שבט/ט"י

7

13 Data Structures and Algorithms 31632

 Modern algorithms are often written as

“Flow Charts” as the figure on the right

side which describes Euclid’s algorithm

 There are many graphical computer

programs for drawing beautiful Flow

Charts which you can use for designing

your algorithms

 Here is a Flow Chart for a popular

version of Euclid’s Algorithm:

14 Data Structures and Algorithms 31632

 The other method for expressing Algorithm is by a semi-formal

language called Pseudo-Code

 Since Python is simple and very readable as pseudo-code and at the

same time it is also a fully running formal language, there are more

and more courses and books that use it for a data structures and

algorithms courses

def gcd2(a, b):
 if b == 0:
 return a
 else:
 if a>b:
 a = a-b
 else:
 b = b-a
 return gcd2(a,b)

http://en.wikipedia.org/wiki/Algorithm
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/gcd.py
http://en.wikipedia.org/wiki/Algorithm

ד"תשע/שבט/ט"י

8

15 Data Structures and Algorithms 31632

 Theorem: Assume that a>b>0, are two integers.

For any integer d: d divides a and b  d divides a-b and b

 Proof is easy!

 Definition: div(a,b) = {d | d divides a and b}

 Consequence: div(a,b) = div(a-b, b)

 Consequence: gcd(a,b) = gcd(a-b, b)

16 Data Structures and Algorithms 31632

def gcd2(a, b):
 if b == 0:
 return a
 else:
 if a>b:
 a = a-b
 else:
 b = b-a
 return gcd2(a,b)

Problem with recursion:

However the gcd2 is recursive, and thus can fail if a and b are very large:

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/gcd.py

ד"תשע/שבט/ט"י

9

17 Data Structures and Algorithms 31632

def gcd3(a, b):
 "Find the greatest common divisor for two integers: a,b"

 if a == 0:
 return b
 elif b == 0:
 return a
 while a != b:
 if a > b:
 a = a - b
 else:
 b = b - a
 return a

18 Data Structures and Algorithms 31632

 Python contains an official GCD algorithm as part of the fractions

module:

def gcd(a,b):
 while a:
 a, b = b%a, a
 return b

 This follows immediately from: gcd(a,b) = gcd(a, b-a)

 For any integer k, gcd(a,b) = gcd(a, b – ka) = gcd(b-ka, a)

 If k = b/a, then b-ka = b%a, and we get: gcd(a,b) = gcd(b%a, a)

 Why the algorithm must stop? (could be an infinite loop?)

Prove that the numbers are decreasing until a==0

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/gcd.py
http://www.python.org/dev/peps/pep-0020/

ד"תשע/שבט/ט"י

10

19 Data Structures and Algorithms 31632

import time

def gcd_time_test(f, a, b):
 print "Running %s(%d,%d)" % (f.func_name, a,b)
 start = time.time()
 try:
 print "gcd =", f(a,b)
 except Exception as e:
 print e
 end = time.time()
 print "runtime = %.3f seconds" % (end-start,)

20 Data Structures and Algorithms 31632

def test1():
 a = 2**13 * 3**4 * 5**3
 b = 2**7 * 3**5 * 5**2
 gcd_time_test(gcd1, a, b)
 gcd_time_test(gcd2, a, b)
 gcd_time_test(gcd3, a, b)
 gcd_time_test(gcd4, a, b)

This is just a simple performance test.

A more rigorous test should sample a

larger variety of numbers and each

calculation should be repeated several

times (average time)

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/gcd.py

ד"תשע/שבט/ט"י

11

21 Data Structures and Algorithms 31632

 Data Type: unsigned integers: 0, 1, 2, 3, 4, 5, …

 Definition: a prime number is an integer p>1 which has exactly two

divisors: 1, and p.

 Problem: Given a positive integer n, find if n is a prime number?

 Here is a Naïve simple algorithm that solves this problem:

def is_prime(n):
 if n <=1: return False
 i=2
 while i<n:
 if n%i==0:
 return False
 i += 1
 return True

22 Data Structures and Algorithms 31632

 In Object Oriented Design, a Container is any object that

contains other objects in itself

 Other words: a collection is a group of values with no

implied organization or relationship between the individual

values (Rance Necaise book)

 Some languages restrict the elements to a specific data

type such as integers or floating-point values

 Python collections do not have such restriction

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/primes.py

ד"תשע/שבט/ט"י

12

23 Data Structures and Algorithms 31632

 The programming languages and literature are full with

many such object with many different names

 List

 Array

 Sequence

 Vector

 Set

 Stack

 Queue

 Heap

 Map

 Hash Table

 Dictionary

 Tree

 Graph

 Multimap

 Multiset

 Priority Queue

 String

24 Data Structures and Algorithms 31632

 In contrast to Container object, a Leaf Object is an object

that does not contain any reference to other objects (“has

no child objects”)

 In Python these are sometimes called “primitive types”

 Integer

 Float

 Complex number

 Boolean

 Leaf Objects are the building blocks from which all other

objects are built

ד"תשע/שבט/ט"י

13

25 Data Structures and Algorithms 31632

 Integer: -5, 19, 0, 1000 (C long)

 Float: -5.0, 19.25, 0.0, 1000.0 (C double)

 Complex numbers: a+bj

 Boolean: True, False

 Long integers (unlimited precision)

 Immutable string: “xyz”, “Hello, World”

26 Data Structures and Algorithms 31632

Arithmetic Operations

Operation Result
x + y sum of x and y

x - y difference of x and y

x * y product of x and y

x / y quotient of x and y (Integer division if x,y integers

x % y remainder of x / y

-x x negated

+x x unchanged

abs(x) absolute value or magnitude of x

int(x) x converted to integer

long(x) x converted to long integer (this is very long …)

float(x) x converted to floating point

complex(re,im) a complex number with real part re, imaginary part im. im defaults to zero

c.conjugate() conjugate of the complex number c. (Identity on real numbers)

divmod(x, y) the pair (x / y, x % y)

pow(x, y) x to the power y

x ** y x to the power y

ד"תשע/שבט/ט"י

14

27 Data Structures and Algorithms 31632

Comparisons

Operation Meaning

< strictly less than

<= less than or equal

> strictly greater than

<= greater than or equal

== equal

!= not equal

is object identity

is not negated object identity

28 Data Structures and Algorithms 31632

Bitwise Operations

Operation Result
x | y bitwise or of x and y

x ^ y bitwise exclusive or of x and y

x & y bitwise and of x and y

x << n x shifted left by n bits

x >> n x shifted right by n bits

~x the bits of x inverted

ד"תשע/שבט/ט"י

15

29 Data Structures and Algorithms 31632

The Complex Numbers Class

import cmath
z = cmath.sqrt(-9)
 3j
z = cmath.sqrt(5-12j)
 (3-2j)
z.imag
 -2.0
z.real
 3.0
z.conjugate()
 (3+2j)

The cmath module defines Complex

numbers arithmetic

Python contains a built-in type (class) for

complex numbers

A complex number object has two fields

and one method:

imag imaginary part

real real part

conjugate() The conjugate number

30 Data Structures and Algorithms 31632

Methods for creating new

objects
Constructors

Methods for accessing internal

data fields without modifying the

data!

Accessors

Methods for modifying object

data fields
Mutators

Methods for processing data

elements sequentially
Iterators

ד"תשע/שבט/ט"י

16

31 Data Structures and Algorithms 31632

 L = list_create1(e0, e1, e2,... ,en-1)

 Create a new list L from n elements: e0, e1, …, en

 L = list_create2(other)

 Create a new list L from other list or another container structure

 get_item(L,i) - Get element i of list L

 set_item(L,i,e) - Set element i of list L to e

 contains(L,e)

 Check if element e belongs to list L. Returns: Boolean True or False

 append(L,e)

 Add a new element e to L

 What if e already belongs to L? (answer: duplications are allowed!)

 remove(L,e)

 Remove an element e from L

 What if e is not in L? (two possibilities: 1. do nothing, 2. raise an error)

32 Data Structures and Algorithms 31632

 insert(L, index, e)

 Insert a new element e at index index

 Side effect: list grows by one element

 size(L)

 Return the size of L

 extend(L,L2)

 Extend list L by list L2

 reverse(L)

 slice(L,i,j)

 Return a sub-list consisting of all elements of L from index i to index j-1

 index(L,e)

 Find the index of element e in L

ד"תשע/שבט/ט"י

17

33 Data Structures and Algorithms 31632

 In this highly recommended methodology you write your tests before the

implementation of your ADT !!!

 After implementation, your tests should run and PASS after each

modification you make to your implementation (“nightly test regression”)

 The following tests are your “insurance policy” that your implementation

is correct. The more tests you write, the better you’re insured

Testing our List ADT
L1 = list_create1(2, 3, 5, 7, 11)
L2 = list_create2(L1) # copy constructor
assert L2 == L1 # Assertion
append(L1, 37)
remove(L1, 2)
remove(L1, 3)
L3 = list_create1(5, 7, 11, 37)
assert L1 == L3 # Assertion

34 Data Structures and Algorithms 31632

 After defining an abstract data type, we need to implement it

in a specific programming language

 First we must define a concrete data structure in the

particular language for representing our abstract data

 Python basic data structures are usually implemented in the

C programming language

 More complex data structures are usually implemented over

the Python languages itself, and later transformed to C code

if performance is critical

ד"תשע/שבט/ט"י

18

35 Data Structures and Algorithms 31632

 Lists in Python are implemented as a C array of PyObject pointers

 **ob_item is an array of pointers to PyObject pointers

 A Python list is therefore an array of references to any Python

objects!

 A PyListObject can grow and shrink (so there could be many calls

to malloc and free on the way … but Python users shouldn't care)

typedef struct {
 int ob_refcnt ;
 struct _typeobject *ob_type ;
 int ob_size ;
 PyObject **ob_item ;
 int allocated ;
} PyListObject ;

36 Data Structures and Algorithms 31632

static int app1(PyListObject *self, PyObject *v) {
 Py_ssize_t n = PyList_GET_SIZE(self) ;

 assert (v != NULL) ;
 if (n == PY_SSIZE_T_MAX) {
 PyErr_SetString(PyExc_OverflowError,
 "cannot add more objects to list") ;
 return -1 ;
 }

 if (list_resize(self, n+1) == -1) /* increase list size by +1 */
 return -1 ;

 Py_INCREF(v) ; /* incr reference count of v */
 PyList_SET_ITEM(self, n, v) ; /* add pointer v at the end */
 return 0 ;
}

ד"תשע/שבט/ט"י

19

37 Data Structures and Algorithms 31632

static int ins1(PyListObject *self, Py_ssize_t where, PyObject *v) {
 Py_ssize_t i, n = Py_SIZE(self) ;
 PyObject **items ;
 if (v == NULL) {
 PyErr_BadInternalCall() ; return -1 ;
 }
 if (n == PY_SSIZE_T_MAX) {
 PyErr_SetString(PyExc_OverflowError, "cannot add more objects to list") ;
 return -1 ;
 }
 if (list_resize(self, n+1) == -1)
 return -1 ;
 if (where < 0) {
 where += n ;
 if (where < 0)
 where = 0 ;
 }
 if (where > n)
 where = n ;
 items = self->ob_item ;
 for (i = n ; --i >= where ;) /* Move all items [i:n] to [i+1:n+1] ! */
 items[i+1] = items[i] ;
 Py_INCREF(v) ;
 items[where] = v ; /* insert the new value v at index where */
 return 0 ;
}

No time in class

Home reading!

38 Data Structures and Algorithms 31632

/* Reverse a slice of a list in place, from lo to hi (exclusive) */
static void reverse_slice(PyObject **lo, PyObject **hi) {
 assert(lo && hi) ; /* make sure lo and hi are not NULL */
 PyObject* tmp
 --hi ; /* hi itself is excluded */
 while (lo < hi) {
 tmp = *lo ;
 *lo = *hi ;
 *hi = t ;
 ++lo ;
 --hi ;
 }
}

ד"תשע/שבט/ט"י

20

39 Data Structures and Algorithms 31632

def _reverse_recursive(S, begin, end):
 """ Reverse elements in slice S[begin:end+1] """
 if end>begin:
 # swap first and last elements
 S[begin], S[end] = S[end], S[begin]
 # Recursion:
 _reverse_recursive(S, begin+1, end-1)

def reverse_recursive(S):
 _reverse_recursive(S, 0, len(S)-1)

40 Data Structures and Algorithms 31632

def reverse_iterative(S):
 """ Reverse elements in sequence S."""
 a, b = 0, len(S)-1
 while a < b:
 S[a], S[b] = S[b], S[a]
 a, b = a+1, b-1

Example:
S = [0, 1, 2, 3]
a, b = 0, 3 ==> [3, 1, 2, 0]
a, b = 1, 2 ==> [3, 2, 1, 0]
a, b = 2, 1 ==> done

ד"תשע/שבט/ט"י

21

41 Data Structures and Algorithms 31632

 Remember: tests must be written before you even think

about an implementation!

 Make sure your tests cover the major features

 After writing an implementation you must run your tests: if

they fail, then your implementation is bad

 After changing an implementation you must run all the tests

again

 You may decide to throw away the whole implementation

and write a new one, without any change to your ADT

specification (“same Interface different implementation”) –

your tests should pass again with the new implementation!

42 Data Structures and Algorithms 31632

 There should be a total separation between an ADT

specification (sometimes called “Interface specification”) and its

possibly many implementations

 For example, the Python Language has a full implementation

over Java (called Jython), and at the same time Microsoft has a

full implementation of Python over C# which is called IronPython

 The Python implementation over C is called CPython

 The same Python tests must all pass in all three

implementations: CPython, Jython, and IronPython !

 The Python language itself is a pure interface! Unlike low level

languages such as C it does not have any business with

hardware registers, contiguous memory cells, etc. No relation to

hardware at all!

ד"תשע/שבט/ט"י

22

43 Data Structures and Algorithms 31632

 No clear separation between major and minor data types

 For example, when we see append(a,b) it’s not always

clear which is the list and who is the element?

 Composite expressions like:

 insert(append(extend(L,L2),a3),7,b4)
can be very hard to read and understand

 Generic method names like append(), insert(),

remove(), size(), etc., cannot be reused for a different

data structure (like FILE or Vector), since they are global

and already taken by the List data type … this is a serious

trouble.

 Code reuse is difficult

44 Data Structures and Algorithms 31632

 L = list_create1(e0, e1, e2,..., en-1) [constructor]

 Create a new list L from n elements: e0, e1,... , en-1

 L = list_create2(other) [constructor]

 Create a new list L from other list or a container structure

 L.item(i) - Get element i of list L [accessor]

 L.contains(e) [accessor]

 Check if element e belongs to list L

 Returns: boolean True or False

 L.append(e) [mutator]

 Add a new element e to L

 What if e already belongs to L? (answer: duplications are allowed!)

 L.remove(e) [mutator]

 Remove an element e from L

 What if e is not in L? (two possibilities: 1. do nothing, 2. raise an error)

ד"תשע/שבט/ט"י

23

45 Data Structures and Algorithms 31632

 L.replace(index, e) [mutator]

 Replace element at index index with e

 L.insert(index, e) [mutator]

 Insert a new element e at index index

 Side effect: list grows by one element

 L.size() [accessor]

 Return the size of L

 L.extend(L2) [mutator]

 Extend list L by list L2

 L.reverse() [mutator]

 L.slice(i,j) [accessor]

 Return a sub-list consisting of all elements of L from index i to index j-1

 L.index(e) [accessor]

 Find the index of element e in L

46 Data Structures and Algorithms 31632

 We need to update all our procedural oriented test to be object oriented

Testing our List ADT
L1 = list_create1(2,3,5,7,11)
L2 = list_create2(L1) # “copy constructor”
assert L2 == L1 # Assertion
assert L2.item(0) == 2
L1.append(37)
L1.remove(2)
L1.remove(3)
L3 = list_create1(5,7,11,37)
assert L1 == L3 # Assertion
assert L3.index(37) == 3 # Assertion
L3.reverse()
L4 = list_create1(37,11,7,5)
assert L3 == L4 # Assertion

ד"תשע/שבט/ט"י

24

47 Data Structures and Algorithms 31632

 The functional notation

 foo(x), bar(x,y), baz(x,y,z)

was invented by the Mathematician Leonard Euler at 1748

 There is no specific sacred or holly reason for this notation!

Euler could at the same time use ‘<x>f’ or ‘f-x-’ or many

other possible notations

 We already have exceptions to this rule when we write x+y

instead of add(x,y), or x**n instead of power(x,n).

 Python writes: L = [a, b, c] instead of

list_create(a,b,c)

48 Data Structures and Algorithms 31632

 The most basic constructor for lists is:

 L = [x0, x1, x2, ..., xn]

 It corresponds to: list_create1(x0, x1, x2, …, xn)

 The other constructor is list(container_object)

 Lists can be created from a variety of other container

objects such as: set, array, dictionaries, and other list

ד"תשע/שבט/ט"י

25

49 Data Structures and Algorithms 31632

 Specification name and Implementation name do not have

to be the same!

 For example, in Python, the call

 L = list_create1(e0, e1, e2,..., en-1)
has been changed to:

 L = [e0, e1, e2, …, en-1]
and the call
 L.contains(e)
Has been changed to:
 e in L

 The only essential thing is that the name conveys the

meaning of the operation, and the operation is precisely

defined

50 Data Structures and Algorithms 31632

Python List Syntactic Sugar

Operation Python Syntactic Sugar

L=list_create1(a,…,b) L = [a, ...,b]

L=list_create2(other) L = list(other)

L.contains(e) e in L

L.item(i) L[i]

L.size() len(L)

L.slice(i,j) L[i:j]

L.equals(other) L == other

L.remove_by_index(i) del L[i]

L1.add(L2) L1+L2

L.mul(n) L*n or n*L

ד"תשע/שבט/ט"י

26

51 Data Structures and Algorithms 31632

 Some object oriented languages (like C++) contain an additional

method type: destructor

 A destructor is a method for destroying (or terminating) an object

 A destructor usually frees the memory that was used by the object and

may also perform additional cleanup and finalization tasks

 In such languages, failure to delete objects at the right time can lead to

serious memory problems, and even to program crash

 Modern object oriented languages such as Java, C#, and Python,

contain a mechanism (called “garbage collection”) which automatically

deletes objects as soon as they’re not needed anymore

 We will therefore not bother about this concept anymore in this course

 In extreme cases if needed you can use the Python del operator to

delete objects: del L

52 Data Structures and Algorithms 31632

 Sequence type (container) in which elements are pushed and popped

out from the top end

 AKA LIFO – Last In First Out

ד"תשע/שבט/ט"י

27

53 Data Structures and Algorithms 31632

 s = Stack() Constructor

 Create a new empty stack

 s.push(item) Mutator

 Add an item to the top of the stack

 s.pop() Mutator

 Pop an item to the top of the stack

 s.peek() Accessor

 Return the item to the top of the stack (don’t pop it!)

 Return None if stack is empty (this is not a good idea, why?)

 s.size() Accessor

 Return the number of items in the stack

 s.is_empty() Accessor

 Return True if stack is empty, False if stack is non-empty

54 Data Structures and Algorithms 31632

s = Stack()
s.push(1)
s.push(1)
s.push(2)
assert s.pop() == 2
assert s.pop() == 1
assert s.pop() == 1
assert s.is_empty()

ד"תשע/שבט/ט"י

28

55 Data Structures and Algorithms 31632

s = Stack()
expression = "a+(b*(c+d)+x*(y-a)+z)-n“

Check if left/right parens are
legally balanced
for char in expression:
 if char == '(':
 s.push('L')
 if char == ')':
 if s.peek() == 'L':
 s.pop()
 else:
 s.push('R')

assert s.is_empty()

56 Data Structures and Algorithms 31632

s = Stack()
expression = "a+(b*(c+d)+x*(y-a)+z)-n“

Frame 0: empty stack
Frame 1: L
Frame 2: L, L
Frame 3: L
Frame 4: L, L
Frame 5: L
Frame 6: empty stack

ד"תשע/שבט/ט"י

29

57 Data Structures and Algorithms 31632

class Stack :
 def __init__(self) :
 self.items = []

 def push(self, item) :
 self.items.append(item)

 def pop(self) :
 return self.items.pop()

 def peek(self):
 return self.items[-1]

 def is_empty(self) :
 return (self.items == [])

http://www.greenteapress.com/thinkpython/thinkCSpy/html/chap18.html

58 Data Structures and Algorithms 31632

DICTIONARY, SET,

TABLE

Part 2

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/stack.py
http://www.greenteapress.com/thinkpython/thinkCSpy/html/chap18.html
http://www.greenteapress.com/thinkpython/thinkCSpy/html/chap18.html
http://www.greenteapress.com/thinkpython/thinkCSpy/html/chap18.html

ד"תשע/שבט/ט"י

30

59 Data Structures and Algorithms 31632

 A set data structure is a container of objects with the

following properties

 Elements are unique. A set cannot contain two instances of

the same element (like a list or an array)

 Elements do not have an order. All we know about an

element e is whether it belongs or does not belong to a set

 Set data structure originate in the mathematical theory of

Set Theory, but have useful applications in computer

science

60 Data Structures and Algorithms 31632

 s = set_create1()

 Create a new empty set s

 s = set_create2(container)

 Create a new set s from other set or any another container object

 s.add(e)

 Add element e to set s

 s.remove(e)

 Remove an element e from the set s

 If e is not in s, raise an error

 s.contains(e)

 Check if element e belongs to the set s

 Returns: boolean True or False

 Efficiency requirement: should be very fast! O(1)

ד"תשע/שבט/ט"י

31

61 Data Structures and Algorithms 31632

 s.union(container)

 Set union of s elements with elements in container

 Container can be any Python container (including a dictionary!)

 Does not modify s! Just return the result!

 s.intersect(container)

 Intersection of s with any other Python container

 Does not modify s! Just return the result!

 s.subtract(container)

 Remove from s all elements in container

 s.discard(e)

 Remove an element from a set if it is a member

 If the element is not a member, do nothing

 s.clear()

 Remove all elements of s (make s an empty set)

62 Data Structures and Algorithms 31632

 s.copy()

 Create a copy of s

 Same as: s2 = set(s)

 s.issubset(container)

 Check if s is a subset of container. Return: True or False.

 Container can be any Python container (even a dictionary!)

 s.isdisjoint(container)

 Check if s is disjoint to container (no common elements)

 s.issuperset(container)

 Check if s includes container elements. Return: True or False.

 s.pop()

 Remove an arbitrary element from s

 Raise an error if s is empty

ד"תשע/שבט/ט"י

32

63 Data Structures and Algorithms 31632

 s.equal(s2)

 check if two sets are equal (same as: s == s2)

 s.update(container1, container2, ..., containern-1)

 Add elements from other containers

 s.iterator()

 Create an iterator object for iterating over the set elements

 s.size()

 Get the size of s (number of elements)

64 Data Structures and Algorithms 31632

Set Test

s1 = set_create1()
s1.add(17)
s1.add(18)
s1.add(18) # adding 18 twice!
assert s1.contains(17)
assert s1.size() == 2
A = list_create1(2, 4, 6, 8, 2, 6) # list container
B = list_create1(4, 8, 2, 6) # list container
s2 = set_create2(A)
s3 = set_create2(B)
assert s2.equals(s3)
s3.add(100)
assert s2.issubset(s3)
s3.remove(100)
assert s2.equals(s3)

This is just a small example of how ADT regression test should look like.

A real test should cover all the ADT operations from all possible angles.

After every implementation change, the test should pass.

ד"תשע/שבט/ט"י

33

65 Data Structures and Algorithms 31632

 Python set is already implemented as a C hash table

 But it could also be implemented by the standard Python

List data structure

 The implementation is available at this link:

Link to Set implementation as list

 You also need to download

Link to three set tests

66 Data Structures and Algorithms 31632

 The dictionary data structure store key/value pairs

 Its critical advantage is the speed for getting a value from a key! We’ll

later explain what O(1) is and why this is the fastest time

 d = dict_create1()

 Create a new empty dictionary

 d = dict_create2(key1: value1, key2: value2, ...)

 Create a new dictionary from a list of key/value pairs

 d = dict_create3(map_object)

 Create a new dictionary from other map_object

 d = dict_create4(iterable)

 Create a new dictionary from an iterator which returns key/value pairs

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/set_impl_as_list.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/set_tests.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/set_tests.py

ד"תשע/שבט/ט"י

34

67 Data Structures and Algorithms 31632

 d.contains(key)

 Check if dictionary d contains a key

 d.add(key, value)

 Adds a new key/value pair to the dictionary if the key is not already there

 If the key already there, then the old value is replaced with the new value

 d.remove(key)

 Remove key (and its associated value) from the dictionary

 d.get(key)

 Get the value associated with key

 d.iterator()

 Creates and returns an iterator that can be used to iterate over the keys

 d.copy()

 Copy a dictionary

68 Data Structures and Algorithms 31632

 d.clear()

 Remove all keys and values

 d.items()

 Return a list of all key/value pairs stored in the dictionary

 d.pop(key)

 Return the value associated with key, and remove key (and its associated value)

from the dictionary

 d.popitem()

 Remove an arbitrary key/value pair from the dictionary and return it

 Raise an error if dictionary empty

 d.update(map_object)

 Extend dictionary with additional key/value pairs from map_object

ד"תשע/שבט/ט"י

35

69 Data Structures and Algorithms 31632

 Python provides a very efficient and easy to use dictionary class

 There are two ways to create and initialize a Python dictionary

 Python dictionary has all the standard dictionary methods and more

Create a new empty dictionary

d = dict()

Create and initialize a dictionary

d = dict(name='Avi Cohen', age=32, id=5802231, address='Hayarden 43, Gedera')

Alternative constructors:

Create a new empty dictionary

d = {}

Create and initialize a dictionary

d = {name: 'Avi Cohen', age: 32, id: 5802231, address: 'Hayarden 43, Gedera'}

70 Data Structures and Algorithms 31632

print "Avi's age is:", d['age']

print "Avi's address is:", d['address']

print "Avi has moved to a new town:"

d['address'] = 'Hayarkon 25, Haifa'

del d[key] # deletes the mapping with that key from d

len(d) # return the number of keys

x in d # return True if x is a key of d

x not in d # return False if x is not a key of d

d.keys() # returns a list of all the keys in the dictionary

d.values() # returns a list of all the values in the dictionary

ד"תשע/שבט/ט"י

36

71 Data Structures and Algorithms 31632

 A multiset is a set in which elements may occur several

times

 Example: words in a text file. It’s not enough to know the set

of words, we’re also interested in how many times each

word occurs?

 As with set, multiset elements are not ordered. All we know

about an element e is the number of times it appears

 In some implementations, the number of occurrences can

be 0 and even negative !

72 Data Structures and Algorithms 31632

 m = multiset_create1()

 Create a new empty set s

 m = multiset_create2(container)

 Create a new set s from other set or any another container object

 m.add(e, n=1)

 Add element e with n occurrences

 m.remove(e)

 Remove an element e from the multiset m

 Be silent If e is not in s (usual behavior)

 m.contains(e)

 Check if element e belongs to the multiset m

 Returns: boolean True or False

 Efficiency requirement: should be very fast! O(1)

ד"תשע/שבט/ט"י

37

73 Data Structures and Algorithms 31632

 m.subtract(container)

 Remove from s all elements in container

 s.discard(e)

 Remove an element from a set if it is a member

 If the element is not a member, do nothing

 s.clear()

 Remove all elements of s (make s an empty set)

74 Data Structures and Algorithms 31632

 The Table data type is the most important data type in the

field of databases (“relational databases”), spread sheet

software (like Microsoft Excel), and also in mathematics (for

representing a matrix or a two-dimensional array of

numerical data). In VLSI used for Gate Arrays and FPGA

 Data in a table is organized into rows and columns.

 Data element is accessed by two indices:

 row index

 column index

 This pair of indices (i,j) is called a cell

ד"תשע/שבט/ט"י

38

75 Data Structures and Algorithms 31632

 t = Table(nrows, ncols)

 Create a new table with number of rows = nrows, number of columns = ncols

 t.numRows()

 Return the number of rows in the table t

 t.numCols()

 Return the number of columns in the table t

 t.clear(value)

 Clear and set all elements to value

 t.setitem(i, j, value)

 Sets (or modifies) the content of the cell (i,j)

 Both indices must be within valid bounds: 0<=i<nrows, 0<=j<ncols

 t.getitem(i, j)

 Get the content of the cell (i,j)

 Both indices must be within valid bounds: 0<=i<nrows, 0<=j<ncols

76 Data Structures and Algorithms 31632

 Most programming languages provide the more traditional

syntax (based on a very long mathematical history)

sometimes round parens are used instead of brackets

 Providing shorter more intuitive syntax is sometimes called

“Syntactic Sugar”

v = t(i,j) ⟺ v = t.getitem(i,j)
t(i,j) = v ⟺ t.setitem(i,j,v)

v = t[i,j] ⟺ v = t.getitem(i,j)
t[i,j] = v ⟺ t.setitem(i,j,v)

ד"תשע/שבט/ט"י

39

77 Data Structures and Algorithms 31632

Table Indexing

T[0,3] T[0,2] T[0,1] T[0,0]

T[1,3] T[1,2] T[1,1] T[1,0]

T[2,3] T[2,2] T[2,1] T[2,0]

Column 0 Column 1 Column 2 Column 3

Row 0

Row 1

Row 2

3x4 table

78 Data Structures and Algorithms 31632

 The C programming language supports multi-dimensional

arrays (same type) but is using a different kind of syntactic

sugar:

 v = a[i][j] ⟺ v = a.getitem(i,j)
a[i][j] = v ⟺ a.setitem(i,j,v)

ד"תשע/שבט/ט"י

40

79 Data Structures and Algorithms 31632

 The Table ADT can be implemented in several ways

 In C, a two dimensional array is implemented as an “array

of arrays”

typedef struct {
 double value;
} cell ;

Static allocation
cell table[30][40];

Dynamic allocation
cell **table = (cell **)malloc(30 * sizeof(cell*)) ;
for (col = 0; col < 40; ++col)
 table[col] = (cell *)malloc(40 * sizeof(cell)) ;

80 Data Structures and Algorithms 31632

 As you can see, the C two-dimensional array requires a single type for

all cells

 Table code must be duplicated for every new cell type

 The worst part is that it does not include Table methods

 Methods must be defined separately for every new cell type

Implementing the 'clear' method:

void clear(cell **table, int numrows, int numcols, cell value)
{
 int row, col ;

 for(row = 0; row < numrows; row++)
 for(col = 0; col < numcols; col++)
 table[row][col] = value ;
}

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table1.c
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table1.c

ד"תשע/שבט/ט"י

41

81 Data Structures and Algorithms 31632

 Idea: cell (row,col) can be encoded by a single integer:

 row * numcols + col

 We therefore can represent a numrows*numcols table by a single

1-dimensional array:

typedef struct {
 double value;
} cell ;

Dynamic allocation of a 3x4 table
cell* table = (cell *)malloc(3*4 * sizeof(cell));

 In spite of the extra multiplication/addition needed for indexing,

this approach has big advantage from a CPU cache point of view!

82 Data Structures and Algorithms 31632

 Table can be implemented as a list of lists

 Cell values can be of any mixed types

 The numRows() and numCols() methods are easily defined as:

len(table) and len(table[0])

table = [[0,1,2,3] , [4,5,6,7] , [8,9,10,11]]

setitem method:
table[2][0] = 1978

def clear(table, value):
 numrows = len(table)
 numcols = len(table[0])
 for row in range(numrows):
 for col in range(numcols):
 table[row][col] = value

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table2.c
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table1.py

ד"תשע/שבט/ט"י

42

83 Data Structures and Algorithms 31632

 This is essentially the same as the C “array of arrays” idea

table = [[0,1,2,3] , [4,5,6,7] , [8,9,10,11]]

setitem method:
table[2][0] = 1978

def clear(table, value):
 numrows = len(table)
 numcols = len(table[0])
 for row in range(numrows):
 for col in range(numcols):
 table[row][col] = value

84 Data Structures and Algorithms 31632

 Table can also be implemented as a dictionary whose keys are
cell indices (row,col)

 We can use the dictionary to store additional information like the

number of rows and columns:

def new_table(nrows, ncols, value=0):
 table = dict() # table is a dictionary !
 for row in range(nrows):
 for col in range(ncols):
 table[row,col] = value
 table['nrows'] = nrows # save num rows in dict !
 table['ncols'] = ncols
 return table

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table1.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table2.py

ד"תשע/שבט/ט"י

43

85 Data Structures and Algorithms 31632

setitem method:
table[2][0] = 1978

def setitem(table, row, col, value):
 table[row,col] = value

def getitem(table, row, col):
 return table[row,col]

def numRows(table):
 return table['nrows']

def numCols(table):
 return table['ncols']

86 Data Structures and Algorithms 31632

def clear(table, value=0):
 nrows = numRows(table)
 ncols = numCols(table)
 for row in range(nrows):
 for col in range(ncols):
 table[row,col] = value

def printTable(table):
 nrows = numRows(table)
 ncols = numCols(table)
 for row in range(nrows):
 for col in range(ncols):
 print "table[%d,%d] = %s" % (row, col, table[row,col])

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table2.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table2.py

ד"תשע/שבט/ט"י

44

87 Data Structures and Algorithms 31632

def test1():
 table = new_table(3,4)
 clear(table,17)
 table[0,0] = 40
 table[2,3] = 50
 printTable(table)

 Download the table2.py file and run the test below

88 Data Structures and Algorithms 31632

 To fully match the Table ADT we need to do it in an OOD way

 We will show two different ways:

 List of lists representation

 Dictionary representation

 There are of course many other ways to implement a Table ADT,

some are more efficient, but the point of this discussion is to

make a clear distinction between Interface and Implementation!

Class: Table

numRows()

numCols()

setitem(row,col,value)

getitem(row,col)

clear(value)

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table2.c
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/table2.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/table2.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/table2.py

ד"תשע/שבט/ט"י

45

89 Data Structures and Algorithms 31632

class Table:
 def __init__(self, nrows, ncols, value=0):
 self.nrows = nrows
 self.ncols = ncols
 self.list = list()
 for r in range(self.nrows):
 row = ncols * [value]
 self.list.append(row)

 def setitem(self, row, col, value):
 self.list[row][col] = value

 def getitem(self, row, col):
 return self.list[row][col]

 def numRows(self):
 return self.nrows

 def numCols(self):
 return self.ncols

90 Data Structures and Algorithms 31632

class Table:

 # . . . continued

 def clear(self, value=0):
 for row in range(self.nrows):
 for col in range(self.ncols):
 self.list[row][col] = value

 def __str__(self): # print method !
 tbl = ""
 for row in range(self.nrows):
 for col in range(self.ncols):
 tbl += "table[%d][%d] = %s, " % (row, col, self.list[row][col])
 tbl += "\n"
 return tbl

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table3.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table3.py

ד"תשע/שבט/ט"י

46

91 Data Structures and Algorithms 31632

def test1():
 table = Table(4,5)
 table.clear(17)
 table.setitem(0,0,40)
 table.setitem(3,2,80)
 print table
 print "Number of rows =", table.numRows()
 print "Number of columns =", table.numRows()

 Here is a small test for testing our class

 Of course, a real life test should be more extensive !

 Download the source code and run the test

92 Data Structures and Algorithms 31632

class Table:
 def __init__(self, nrows, ncols, value=0):
 self.nrows = nrows
 self.ncols = ncols
 self.dict = dict()
 for row in range(self.nrows):
 for col in range(self.ncols):
 self.dict[row,col] = value

 def setitem(self, row, col, value):
 self.dict[row,col] = value

 def getitem(self, row, col):
 return self.dict[row,col]

 def numRows(self):
 return self.nrows

 def numCols(self):
 return self.ncols

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table3.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/table3.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table4.py

ד"תשע/שבט/ט"י

47

93 Data Structures and Algorithms 31632

class Table:

 # . . . continued

 def clear(self, value=0):
 for row in range(self.nrows):
 for col in range(self.ncols):
 self.dict[row,col] = value

 def __str__(self): # print method !
 tbl = ""
 for row in range(self.nrows):
 for col in range(self.ncols):
 tbl += "table[%d,%d] = %s, " % (row, col, self.dict[row,col])
 tbl += "\n"
 return tbl

 def __setitem__(self, key, value): # overload the [] operator
 self.dict[key] = value

 def __getitem__(self, key): # overload the [] operator
 return self.dict[key]

94 Data Structures and Algorithms 31632

def test1():
 table = Table(4,5)
 table.clear(17)
 table.setitem(0,0,40)
 table.setitem(3,2,80)
 print table
 print "Number of rows =", table.numRows()
 print "Number of columns =", table.numRows()

def test2():
 table = Table(4,5)
 table.clear(17)
 table[0,0] = 40
 table[3,2] = 80
 print table[3,2]
 print table

 Same test1() from implementation 3 should give identical result!

 We also add a test2() for testing the brackets overloading

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table4.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/table4.py

ד"תשע/שבט/ט"י

48

95 Data Structures and Algorithms 31632

SEARCHING

AND

SORTING

Part 3

96 Data Structures and Algorithms 31632

 Searching is the process of finding particular information

from a collection of data based on specific criteria

 Search operations can be performed on every collection

data structure (string, array, list, stack, dictionary, set, …)

 Search operation accepts two inputs:

 Collection (or sequence) object

 Search key

 Search key can have several forms

 An item that we want to find in a list

 Part of an item to search

 Multiple parts for searching matching items (Google search)

ד"תשע/שבט/ט"י

49

97 Data Structures and Algorithms 31632

 There are four different types of search operations

 In or out: Checking if the collection contains or does not

contain the item

Example: item in L

 First match: Finding the first occurrence of the key and

reporting its location in the collection

Example: List.index(item)

 All matches: Finding all the items in the collection that

match the key

Example: fnmatch.filter(Names, “Dan*”)

 Partial matches: Find the first n items that match the key

98 Data Structures and Algorithms 31632

Linear Search (return first match)

def linear_search(List, item):
 n = len(List)
 for i in range(n):
 if item == List[i]:
 return i
 return -1

 Linear search is already implemented by the list index method except

that when the item is not in the list you get an error

 The run time order of the linear search algorithm is O(n)

 Question: suppose that our sequence is sorted, could this help to speed

the search process?

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/linear_search.py

ד"תשע/שבט/ט"י

50

99 Data Structures and Algorithms 31632

Binary Search

L = [0, 1, 3, 4, 5, 7, 8, 9, 11, 14, 16, 18, 19]
L is a sorted list in increasing order!
binary_search(L, 7)
low = 0, high = len(L) = 12
mid = (low+high) / 2 = 6

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

mid low high

mid low high

mid low

low=mid =high

high

© 2013 Goodrich, Tamassia, Goldwasser

100 Data Structures and Algorithms 31632

Binary Search Algorithm (Recursive)

def binary_search_rec(List, item, low=0, high=None):
 if high is None:
 high = len(List)

 if low >= high: # empty list
 return -1

 mid = (low + high) / 2
 mid_value = List[mid]
 if item < mid_value:
 return binary_search_rec(List, item, low, mid)
 elif item > mid_value:
 return binary_search_rec(List, item, mid+1, high)
 else:
 return mid

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/linear_search.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/binary_search.py

ד"תשע/שבט/ט"י

51

101 Data Structures and Algorithms 31632

Binary Search Algorithm

def binary_search(List, item, low=0, high=None):
 if high is None:
 high = len(List)

 while low < high:
 mid = (low + high) / 2
 mid_value = List[mid]
 if mid_value < item:
 low = mid+1
 elif mid_value > item:
 high = mid
 else:
 return mid
 return -1

102 Data Structures and Algorithms 31632

 Although binary search run time is fast O(log n), it depends

on sorting the sequence !!!

 Questions:

 What is the cost of sorting a sequence container?

 What sorting algorithms do we have?

 And which are the best sorting algorithms?

 In the next slides we will explore several (out of many)

sorting algorithms and check their run time and quality

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/binary_search.py

ד"תשע/שבט/ט"י

52

103 Data Structures and Algorithms 31632

 Sorting is among the most important, and well studied

computational problems

 Data sets are often stored in sorted order, for example, to

allow for efficient searches with the binary search algorithm

 Many advanced algorithms rely on sorting as a subroutine

104 Data Structures and Algorithms 31632

 YouTube Bubble Sort Dance

 The simplest and most intuitive sorting algorithm

L is a list of integers that we want to sort

def bubble_sort(L):
 N = len(L)
 while True:
 sorted = True
 for i in range(0,N-1):
 if L[i+1] < L[i]:
 sorted = False
 L[i], L[i+1] = L[i+1], L[i]
 if sorted:
 return

http://www.youtube.com/watch?v=lyZQPjUT5B4

ד"תשע/שבט/ט"י

53

105 Data Structures and Algorithms 31632

 Here is a different version of Bubble Sort:

L is a list of integers

def bubble_sort2(L):
 N = len(L)
 for i in range(0,N-1):
 for j in range(i+1, N):
 if L[j] < L[i]:
 L[i], L[j] = L[j], L[i]

106 Data Structures and Algorithms 31632

def bubble_sort_test():
 for i in range(24):
 L = range(0,10)
 random.shuffle(L)
 print "L = ", L
 bubble_sort(L)
 print "Bubble sort:", L
 assert L == range(0,10)
 raw_input("Press any key to continue:")

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py

ד"תשע/שבט/ט"י

54

107 Data Structures and Algorithms 31632

Bubble Sort Run Time Data

List Size Run Time (seconds)
100 0.0017

200 0.007

300 0.0157

400 0.0278

500 0.0429

600 0.0611

700 0.0824

800 0.1071

 900 0.1355

1000 0.1663

1100 0.2003

1200 0.2387

1300 0.2789

1400 0.3238

1500 0.3723

1600 0.4252

1700 0.4737

1800 0.5308

1900 0.5964

2000 0.6538

2100 0.7279

2200 0.7914

2300 0.8676

2400 0.9406

2500 1.0191

2600 1.1171

2700 1.1941

2800 1.2853

2900 1.3791

Run time results obtained by running
 Python 2.7.5 on a core-i7 ASUS laptop

O(𝒏𝟐)

Time(n) ≈ 0.000000166*𝒏𝟐

108 Data Structures and Algorithms 31632

 Another name for O(𝒏𝟐) is “Quadratic Time Complexity” which is

considered industry-bad unless the input size is expected to be small in

almost all practical cases

 The above 30 experiments allows us to predict what will happen if our

list size grows

 Lists of size 10M are not very rare. For example, chip floor-plan models

may contain more than 1 billion transistors - 6 months run time for a

10M size list is of course unacceptable

List Size Run Time (seconds)
10000 16.6 seconds

100000 1660 seconds

1000000 166000 seconds

10M 16600000 seconds ~ 6 months

Time(n) ≈ 0.000000166*𝒏𝟐

ד"תשע/שבט/ט"י

55

109 Data Structures and Algorithms 31632

 Python code for the Bubble sort algorithm and the tests code can be

downloaded from:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py

 Here is a typical routine for calculating average run time by generating many

random shuffles of a list

import random

def bubble_sort_average_time(list_size, num_tests):
 times = list()
 L = range(0, list_size)

 for i in range(num_tests):
 random.shuffle(L)
 t0 = time.time()
 bubble_sort(L)
 t1 = time.time()
 t = t1-t0
 times.append(t)

 return sum(times)/num_tests

110 Data Structures and Algorithms 31632

 Code for computing average time is also in:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py

 We expect the student to copy paste and apply it to other algorithms!

Create num_tests lists of size list_size and compute
average time for doing bubble_sort on these lists

def bubble_sort_average_time(list_size, num_tests):
 times = list()
 L = range(0, list_size)

 for i in range(num_tests):
 random.shuffle(L)
 t0 = time.time()
 bubble_sort(L)
 t1 = time.time()
 t = t1-t0
 times.append(t)

 return sum(times)/num_tests

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py

ד"תשע/שבט/ט"י

56

111 Data Structures and Algorithms 31632

 Code for drawing average time graphs is also in:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py

 We expect the student to apply it to other algorithms!

def bubble_sort_runtime_graph():
 import matplotlib.pyplot as pyplot
 Size = [100*i for i in range(1,30)]
 Time = list()
 for N in Size:
 print "N=", N
 t = bubble_sort_average_time(N,16)
 t = round(t,4)
 Time.append(t)

 pyplot.plot(Size,Time)
 pyplot.xlabel('List Size')
 pyplot.ylabel('Run Time')
 pyplot.show()
 header = ('List Size', 'Run Time (seconds)')

112 Data Structures and Algorithms 31632

 Could there be a special list on which Bubble sort runs

forever ?

 The general halting problem: given an algorithm and an

input, can we determine whether the algorithm will

eventually halt or will run forever?

 Being able to prove that a given algorithm will halt for all its

possible inputs is a critical !

 Proving that an algorithm must halt for all its inputs is

usually very hard, and in many cases impossible.

 It may involve very complicated mathematical proofs and/or

very long and expensive computations (e.g., QA, verification

of an VLSI unit)

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/bubble_sort.py
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Halting_problem

ד"תשע/שבט/ט"י

57

113 Data Structures and Algorithms 31632

 We’ll prove that for the second version

 Idea: prove an invariant is true for all iterations

 It holds initially

 If it holds at stage i, then it holds for stage i+1

 Eventually must hold for all the list

 For bubble sort 2, the invariant is:

at iteration i, the sub-list L[0:i] is sorted and any element in

L[i:n] is greater or equal to any element in L[0:i]

 Since i is increasing, it eventually reaches n, and the

algorithm halts

114 Data Structures and Algorithms 31632

 For bubble sort 1, the invariant starts from the end (watch

the Hungarian dance again …)

 The largest element must always “float” to the top, after

which it will never move again!

 Therefore the problem is reduced to L[0,n-1]

 This proves that by at most n iterations of the loop, the list

must be sorted. The inner loop also has n iterations, so by a

total of n**2 steps the sorting is done

 Example: how many swaps are needed to sort the list

 L = [n, n-1, n-2, n-3, …, 2, 1, 0] ?

 This example demonstrates why bubble sort is O(n**2)

http://www.youtube.com/results?search_query=bubble+sort+dance&sm=3

ד"תשע/שבט/ט"י

58

115 Data Structures and Algorithms 31632

 Yet one more intuitive method for sorting a list

 For simplicity, let L be a list of integers whose size is

n=len(L)

 The idea in selection sort is:

 Find the minimal element of L[0], L[1], …, L[n-1] and then make it the first (L[0])

 Find the minimal element of L[1], L[2], …,L[n-1] and make it the second element

(L[1])

 Find the minimal element of L[2], L[3], …,L[n-1] and make it the third element

(L[2])

 Repeat this process until the list is fully sorted

116 Data Structures and Algorithms 31632

L = [7, 2, 8, 4, 6, 5, 1, 3]
 [1, 2, 8, 4, 6, 5, 7, 3]
 [1, 2, 8, 4, 6, 5, 7, 3]
 [1, 2, 3, 4, 6, 5, 7, 8]
 [1, 2, 3, 4, 6, 5, 7, 8]
 [1, 2, 3, 4, 5, 6, 7, 8]
 [1, 2, 3, 4, 6, 5, 7, 8] Sorted!

ד"תשע/שבט/ט"י

59

117 Data Structures and Algorithms 31632

1. Start with i=0
2. For every j from i+1 until n-1, if L[j] is

smaller than L[i], swap L[i] and L[j]
3. Increment i (i = i+1)
4. Repeat step 2 until i=n-1

 This is a slightly different version than the heuristic one (two slides

back)

 In this version we also compute the minimal value as part of the

algorithm (instead of relying on an external method)

118 Data Structures and Algorithms 31632

def selection_sort(L):
 n = len(L)
 for i in range(n):
 min_index = i
 for j in range(i + 1, n):
 if L[j] < L[min_index]:
 min_index = j
 L[i], L[min_index] = L[min_index], L[i]

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/selection_sort.py

ד"תשע/שבט/ט"י

60

119 Data Structures and Algorithms 31632

Selection Sort Run Time

List Size Run Time (seconds)
100 0.0005

200 0.0017

300 0.004

400 0.0069

500 0.0106

600 0.0154

700 0.0205

800 0.0269

900 0.0336

1000 0.0419

1100 0.0501

1200 0.0605

1300 0.0699

1400 0.082

1500 0.0931

1600 0.1069

1700 0.1193

1800 0.1358

1900 0.1495

2000 0.1676

2100 0.1827

2200 0.203

2300 0.2194

2400 0.2415

2500 0.2594

2600 0.2831

2700 0.3029

2800 0.329

2900 0.3491

Run time results obtained by running
 Python 2.7.5 on a core-i7 ASUS laptop

O(𝒏𝟐)

Time(n) ≈ 0.0000000415 * 𝒏𝟐

120 Data Structures and Algorithms 31632

 Although Selection sort is 4x faster that Bubble sort, it’s time complexity

is still O(𝒏𝟐) (“Quadratic Time Complexity”) which is means it is

essentially as bad as Bubble sort 

 This is obvious from the following table, which shows that for sorting a

40M random list may take about 2 years

List Size Run Time (seconds)
10000 4.15 seconds

100000 415 seconds

1000000 41510 seconds

40M 66,416,171 seconds ~ 2 years

Time(n) ≈ 0.0000000415 * 𝒏𝟐

ד"תשע/שבט/ט"י

61

121 Data Structures and Algorithms 31632

 Python code for the Selection sort algorithm and the tests code can be

downloaded from:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/selection_sort.py

 Here we introduce a more general function for computing average time which

can be used by any other sorting algorithm!

import random

def sort_average_time(sorter, list_size, num_tests):
 times = list()
 L = range(0, list_size)

 for i in range(num_tests):
 random.shuffle(L)
 t0 = time.time()
 sorter(L)
 t1 = time.time()
 t = t1-t0
 times.append(t)

 return sum(times)/num_tests

122 Data Structures and Algorithms 31632

 Code for computing average time is also in:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py

 The following code can be used for any sort algorithm !

sorter is any function that sorts a list
Create num_tests lists of size list_size and compute
average time for doing bubble_sort on these lists

def sort_average_time(sorter, list_size, num_tests):
 times = list()
 L = range(0, list_size)

 for i in range(num_tests):
 random.shuffle(L)
 t0 = time.time()
 sorter(L)
 t1 = time.time()
 t = t1-t0
 times.append(t)

 return sum(times)/num_tests

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/selection_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/selection_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/selection_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/selection_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/selection_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/sort_bench.py

ד"תשע/שבט/ט"י

62

123 Data Structures and Algorithms 31632

 Code for drawing average time graphs is also in:
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/sort_bench.py

 The following code can be used for any sort algorithm !

def sort_runtime_graph(sorter, n=30, ntests=16):
 import matplotlib.pyplot as pyplot
 import sys
 Sizes = [100*i for i in range(1,n)]
 Times = list()
 for N in Sizes:
 print "N=", N
 t = sort_average_time(sorter, N, ntests)
 t = round(t,4)
 Times.append(t)

 pyplot.plot(Sizes, Times)
 pyplot.xlabel('List Size')
 pyplot.ylabel('Run Time')
 pyplot.show()

124 Data Structures and Algorithms 31632

 Divide

 If the sequence is too small (1 or two elements) then sorting is easy

 If the sequence is big, divide it to two parts and solve each part

separately

 Conquer

Recursively solve the subproblems associated with the

subsets

 Combine

Take the solutions to the sub problems and merge them into

a solution to the original problem

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/sort_bench.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/sort_bench.py

ד"תשע/שבט/ט"י

63

125 Data Structures and Algorithms 31632

Example: Divide

8 2 9 1 4 7 5 3

8 2 9 1 4 7 5 3

8 2 4 7 9 1 5 2

8 4 9 5 2 7 1 3

126 Data Structures and Algorithms 31632

Example: Merge

1 2 3 4 5 7 8 9

1 2 8 9 3 4 5 7

2 8 4 7 1 9 3 5

8 4 9 5 2 7 1 3

ד"תשע/שבט/ט"י

64

127 Data Structures and Algorithms 31632

The merge_sort algorithm

def merge_sort(L):
 n = len(L)
 if n <= 1:
 return
 mid = n / 2
 A = L[0:mid]
 B = L[mid:]
 merge_sort(A)
 merge_sort(B)
 M = merge(A,B)
 for i in range(n):
 L[i] = M[i]

128 Data Structures and Algorithms 31632

The merge algorithm
def merge(A, B):
 "merge sorted lists A and B. Return a sorted result"
 result = []
 i = 0
 j = 0

 while True:
 if i >= len(A): # If A is done,
 result.extend(B[j:]) # Add remaining items from B
 return result # And we're totally done

 if j >= len(B): # Same again, but swap roles
 result.extend(A[i:])
 return result

 # Both lists still have items, copy smaller item to result.
 if A[i] <= B[j]:
 result.append(A[i])
 i += 1
 else:
 result.append(B[j])
 j += 1

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/merge_sort.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/merge_sort.py

ד"תשע/שבט/ט"י

65

129 Data Structures and Algorithms 31632

Merge Sort Run Time Benchmark

O(n log n)

Time(n) ≈ 0.000001021 * n * log n

Merg Sort Algorithm

List Size Run Time (seconds)

600 0.0041

700 0.0049

800 0.0055

900 0.0064

1000 0.0073

1100 0.008

1200 0.0089

1300 0.0097

1400 0.0105

1500 0.0113

1600 0.0122

1700 0.0131

1800 0.0138

1900 0.0147

2000 0.0155

2100 0.0165

2200 0.0174

2300 0.0183

2400 0.0191

2500 0.0201

2600 0.0209

2700 0.0217

2800 0.0225

2900 0.0236

130 Data Structures and Algorithms 31632

Merge Sort Run Time

List Size Run Time (seconds)

10000 0.0940 seconds

100000 1.1754 seconds

1000000 14.1056 seconds

10M 164.5657 seconds (bubble was 6 months !!!)

1000M
21158 seconds - less than 6 hours vs. 5200 years with

bubble sort

O(n log n)

Time(n) ≈ 0.0000004282 * n * log n

ד"תשע/שבט/ט"י

66

131 Data Structures and Algorithms 31632

 Invented by Tony Hoare 1960 (Moscow Univ.)

 Divide

 The first item is selected as the pivot, p. The pivot value is used to

partition the list to two sub-lists A and B, such that

 A consists of all elements less than p

 B consists of all elements bigger or equal to p

 Conquer

Recursively solve the sub-problems by applying

quick_sort to A and B

 Combine

Combine the solutions of quick_sort(A) and

quick_sort(B) by a simple concatenation (A then B)

132 Data Structures and Algorithms 31632

The partition algorithm

def partition(L, pivot):
 A = []
 B = []
 for element in L:
 if element < pivot:
 A.append(element)
 else:
 B.append(element)
 return A, B

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/merge_sort.py

ד"תשע/שבט/ט"י

67

133 Data Structures and Algorithms 31632

The qsort algorithm

def qsort(L):
 n = len(L)
 if n <= 1:
 return
 pivot = max(L[0], L[-1])
 A, B = partition(L, pivot)
 qsort(A)
 qsort(B)
 A.extend(B)
 for i in range(n):
 L[i] = A[i]

134 Data Structures and Algorithms 31632

Run Time Benchmark

O(n log n)

Time(n) ≈ 0.0000007050 * n * log n

List Size Run Time (seconds)

500 0.0023

600 0.0029

700 0.0034

800 0.004

900 0.0044

1000 0.0051

1100 0.0057

1200 0.0063

1300 0.0069

1400 0.0075

1500 0.008

1600 0.0086

1700 0.0092

1800 0.0097

1900 0.0103

2000 0.0109

2100 0.0115

2200 0.0121

2300 0.0127

2400 0.0132

2500 0.0138

2600 0.0146

2700 0.0152

2800 0.0158

2900 0.0163

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/merge_sort.py

ד"תשע/שבט/ט"י

68

135 Data Structures and Algorithms 31632

 The quick sort algorithm from last slide, although very fast

as compared to the previous algorithms, suffers from one

major problem:

 The partition routine I using additional memory (except of L)

to generates the two sub-lists (which are returned to the

caller)

 The amount of extra space used for an algorithm as a

function of its input size is called is space complexity

 Exercise: what is the space complexity of this version of

qsort?

 A more efficient approach is to perform the partition “in

place” – that is perform partition on the list itself

136 Data Structures and Algorithms 31632

Tony Hoare Partition Algorithm (1960)

def partition(L, start, end):
 pivot = L[start]
 i = start+1
 j = end
 while True:
 while i <= j and L[i] <= pivot:
 i += 1
 while i <= j and pivot <= L[j]:
 j -= 1
 if j < i:
 break
 else:
 L[i], L[j] = L[j], L[i]

 # pivot should move to the middle
 L[start], L[j] = L[j], pivot
 return j

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/quick_sort2.py

ד"תשע/שבט/ט"י

69

137 Data Structures and Algorithms 31632

Tony Hoare qsort Algorithm

def qsort(L, start=0, end=None):
 if end is None: end = len(L) - 1
 if start < end:
 pivot = partition(L, start, end)
 qsort(L, start, pivot-1)
 qsort(L, pivot+1, end)

138 Data Structures and Algorithms 31632

Quick Sort 2 (Tony Hoare)

O(n log n) Average Time

Time(n) ≈ 0.0000004283 * n * log n

List Size Run Time (seconds)

500 0.0013

600 0.0017

700 0.002

800 0.0023

900 0.0027

1000 0.0029

1100 0.0033

1200 0.0036

1300 0.0041

1400 0.0043

1500 0.0048

1600 0.0052

1700 0.0055

1800 0.0058

1900 0.0063

2000 0.0066

2100 0.007

2200 0.0073

2300 0.0077

2400 0.008

2500 0.0085

2600 0.0089

2700 0.0092

2800 0.0096

2900 0.0099

O(n**2) worst case !!

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/quick_sort2.py

ד"תשע/שבט/ט"י

70

139 Data Structures and Algorithms 31632

Quick Sort 2 (Tony Hoare)

List Size Run Time (seconds)

10000 0.0394 seconds

100000 0.4930 seconds

1000000 5.9171 seconds

10M 69.0176 seconds (bubble was 6 months !!!)

1000M
8875.7747 seconds, less than 3 hours vs. 5200 years

with bubble sort

O(n log n) Average Time

O(n**2) worst case!

Time(n) ≈ 0.0000004283 * n * log n

140 Data Structures and Algorithms 31632

 Bubble is a very important example of an algorithm which is

very intuitive, very easy to understand, and very easy to

prove its correctness, yet this is the worst algorithm with

respect to run time complexity

 It proves that an easy and elegant algorithm is not

necessarily good!

 It is also a great example to Tim Peters Zen principles:

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

http://www.python.org/dev/peps/pep-0020

ד"תשע/שבט/ט"י

71

141 Data Structures and Algorithms 31632

 Intuitively method based on alphabetizing a large list of

names (like in a dictionary)

 The list of names is first sorted according to the first letter:

the names are arranged in 26 buckets

 Similarly we can sort numbers according to the most

significant digit

 But Radix sort goes by sorting on the least significant digit

first. Then on the second pass, the entire numbers are

sorted again on the second least-significant digit and so on

142 Data Structures and Algorithms 31632

Radix Sort

INPUT 1st pass 2nd pass 3rd pass

329 720 720 329

457 355 329 355

657 436 436 436

839 457 839 457

436 657 355 657

720 329 457 720

355 839 657 839

It works great for decimal numbers with equal decimal length

ד"תשע/שבט/ט"י

72

143 Data Structures and Algorithms 31632

Radix Sort

INPUT VIEW 1st pass 2nd pass 3rd pass 4th pass 5th pass

29 00029 06720 06720 00029 00029 00029

1457 01457 00355 00029 00057 00057 00057

57 00057 00436 00436 00355 00355 00355

31839 31839 01457 31839 00436 00436 00436

436 00436 00057 00355 01457 01457 01457

6720 06720 00029 01457 06720 31839 06720

355 00355 31839 00057 31839 06720 31839

But if our numbers do not have equal length?

In such case we fill “empty digits” as zeros

144 Data Structures and Algorithms 31632

def radix_sort(L):
 RADIX = 10
 deci = 1

 while True:
 buckets = [list() for i in range(RADIX)]
 done = True

 for n in L:
 q = n / deci # q = quotient
 r = q % RADIX # r = remainder = last digit
 buckets[r].append(n)
 if q > 0:
 done = False # i has more digits

 i = 0 # Copy buckets to L (so L is rearranged)
 for r in range(RADIX):
 for n in buckets[r]:
 L[i] = n
 i += 1

 if done: break
 deci *= RADIX # move to next digit

Radix Sort Algorithm (2002)

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/radix_sort.py

ד"תשע/שבט/ט"י

73

145 Data Structures and Algorithms 31632

Radix Sort Run Time Benchmark

O(nk)

Time(n) ≈ 0.0000019 * n

k = average num digits

List Size Run Time (seconds)

500 0.0008

600 0.001

700 0.0012

800 0.0013

900 0.0014

1000 0.0015

1100 0.0022

1200 0.0023

1300 0.0026

1400 0.0028

1500 0.0029

1600 0.0031

1700 0.0033

1800 0.0035

1900 0.0038

2000 0.004

2100 0.0041

2200 0.0043

2300 0.0045

2400 0.0047

2500 0.0049

2600 0.0051

2700 0.0054

2800 0.0056

146 Data Structures and Algorithms 31632

Radix Sort Run Time

List Size Run Time (seconds)

10000 0.019 seconds

100000 0.19 seconds

1000000 1.9 seconds

10M 19 seconds (bubble was 6 months !!!)

1000M 1900 seconds – half hour vs. 5200 years with bubble sort

Time(n) ≈ 0.0000019 * n

k = average num digits

ד"תשע/שבט/ט"י

74

147 Data Structures and Algorithms 31632

 Python’s built-in sort algorithm was invented by Tim Peters

around 2002

 It is considered to be one of the best sort algorithms in use

 We will not cover it in this preliminary course, but if you’re

interested, here are a few interesting links:

http://en.wikipedia.org/wiki/Timsort

http://www.youtube.com/watch?v=NVIjHj-lrT4

 Link to a simple test of Tim sort

148 Data Structures and Algorithms 31632

Tim Sort Run Time Benchmark

O(n)

Time(n) ≈ 0.0000002857 * n

List Size Run Time (seconds)

500 0.0001

600 0.0001

700 0.0001

800 0.0002

900 0.0002

1000 0.0002

1100 0.0003

1200 0.0003

1300 0.0003

1400 0.0003

1500 0.0004

1600 0.0004

1700 0.0004

1800 0.0004

1900 0.0005

2000 0.0005

2100 0.0005

2200 0.0006

2300 0.0006

2400 0.0006

2500 0.0007

2600 0.0007

2700 0.0007

2800 0.0008

http://en.wikipedia.org/wiki/Timsort
http://en.wikipedia.org/wiki/Timsort
http://www.youtube.com/watch?v=NVIjHj-lrT4
http://www.youtube.com/watch?v=NVIjHj-lrT4
http://www.youtube.com/watch?v=NVIjHj-lrT4
http://www.youtube.com/watch?v=NVIjHj-lrT4
http://www.youtube.com/watch?v=NVIjHj-lrT4
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/tim_sort.py

ד"תשע/שבט/ט"י

75

149 Data Structures and Algorithms 31632

Tim Sort Run Time (average)

List Size Run Time (seconds)

10000 0.00286 seconds

100000 0.0286 seconds

1000000 0.286 seconds

10M 2.86 seconds (bubble was 6 months !!!)

1000M 286 seconds – 5 minutes vs. 5200 years with bubble sort

Time(n) ≈ 0.0000002857 * n

Worst case is still O(n * log n)

150 Data Structures and Algorithms 31632

Part 4: Trees

http://upload.wikimedia.org/wikipedia/commons/b/ba/Shaki_khan_palace_interier.jpg

ד"תשע/שבט/ט"י

76

Trees

© 2013 Goodrich,
Tamassia, Goldwasser

151 Trees

Make Money Fast!

Stock
Fraud

Ponzi
Scheme

Bank
Robbery

Example: Family Tree

© 2013 Goodrich,
Tamassia, Goldwasser

152 Trees

ד"תשע/שבט/ט"י

77

Example: Unix File System

© 2013 Goodrich,
Tamassia, Goldwasser

153 Trees

154 Data Structures and Algorithms 31632

 In computer science, a

tree is an abstract model

of a hierarchical structure

 A tree consists of nodes

with a parent-child

relation

 Applications:

 Organization charts

 File systems

 Programming

environments

© 2013 Goodrich, Tamassia, Goldwasser Trees 154

Computers”R”Us

Sales R&D Manufacturing

Laptops Desktops US International

Europe Asia Canada

ד"תשע/שבט/ט"י

78

155 Data Structures and Algorithms 31632

© 2013 Goodrich, Tamassia, Goldwasser Trees 155

n2 left subtree

n1

n2 n3

n4 n5 n6

n8 n9 n10

Root

Right son of n3

Left son of n3

Parent of n6 and n7

Leaf (all green

nodes)

A node(all circles)

Edge

Node height – number of edges on the longest path to a leaf

Tree height – height of the root

Balanced Tree – All non- leaf have two sons

n11

n7

156 Data Structures and Algorithms 31632

 Root
node without parent (A)

 Internal node
node with at least one child (A, B, C, F)

 Leaf (External node)
node without children (E, I, J, K, G, H, D)

 Ancestors of a node:
parent, grandparent, grand-grandparent,
etc.

 Depth of a node:
number of ancestors

 Height of a node:
1 + Max height of children
(leaf height = 0)

 Height of a tree
maximum depth of any node (3)

 Descendant of a node
child, grandchild, grand-grandchild, etc.

© 2013 Goodrich, Tamassia, Goldwasser Trees 156

subtree

A

B D C

G H E F

I J K

 Subtree: tree consisting of
a node and its
descendants

ד"תשע/שבט/ט"י

79

157 Data Structures and Algorithms 31632

 We use positions to abstract

nodes, left key is return type:

 Generic methods:

 Integer len()

 Boolean is_empty()

 Iterator positions()

 Iterator iter()

 Accessor methods:

 position root()

 position parent(p)

 Iterator children(p)

 Integer num_children(p)

Note: A tree position is like a list index
© 2013 Goodrich, Tamassia, Goldwasser Trees 157

Query methods:

 Boolean is_leaf(p)

 Boolean is_root(p)

Update method:

 element replace (p, o)

Additional update methods
may be defined by data
structures implementing the
Tree ADT

158 Data Structures and Algorithms 31632

© 2013 Goodrich, Tamassia, Goldwasser Trees 158

ד"תשע/שבט/ט"י

80

159 Data Structures and Algorithms 31632

 A traversal visits the nodes of a

tree in a systematic manner

 In a preorder traversal, a node is

visited before its descendants

 Application: print a structured

document

© 2013 Goodrich, Tamassia, Goldwasser Trees 159

Make Money Fast!

1. Motivations References 2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preOrder(v)

visit(v)

for each child w of v

 preOrder (w)

160 Data Structures and Algorithms 31632

 In a postorder traversal, a node

is visited after its descendants

 Application: compute space

used by files in a directory and

its subdirectories

© 2013 Goodrich, Tamassia, Goldwasser Trees 160

Algorithm postOrder(v)

for each child w of v

 postOrder (w)

visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

ד"תשע/שבט/ט"י

81

161 Data Structures and Algorithms 31632

 A binary tree is a tree with the

following properties:

 Each internal node has at most two

children (exactly two for proper

binary trees)

 The children of a node are an

ordered pair

 We call the children of an internal

node left child and right child

 Proper Binary Tree: every node is a

leaf or must have exactly two

children

© 2013 Goodrich, Tamassia, Goldwasser Trees 161

 Applications:

 arithmetic expressions

 decision processes

 searching

A

B C

F G D E

H I LINK TO PYTHON CODE

162 Data Structures and Algorithms 31632

 Binary tree associated with an arithmetic expression

 internal nodes: operators

 external nodes: operands

 Example: arithmetic expression tree for the

expression (2  (a - 1) + (3  b))

© 2013 Goodrich, Tamassia, Goldwasser Trees 162

+

 

- 2

a 1

3 b

LINK TO PYTHON CODE

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/binary_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py

ד"תשע/שבט/ט"י

82

163 Data Structures and Algorithms 31632

 Binary tree associated with a decision process

 internal nodes: questions with yes/no answer

 external nodes: decisions

 Example: dining decision

© 2013 Goodrich, Tamassia, Goldwasser Trees 163

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

164 Data Structures and Algorithms 31632

 Notation

n number of nodes

e number of external

nodes

i number of internal

nodes

h height

© 2013 Goodrich, Tamassia, Goldwasser Trees 164

Properties:

 e = i + 1

 n = 2e - 1

 h  i

 h  (n - 1)/2

 e  2h

 h  log2 e

 h  log2 (n + 1) - 1

ד"תשע/שבט/ט"י

83

165 Data Structures and Algorithms 31632

BinaryTree ADT

The BinaryTree ADT

extends the Tree

ADT, i.e., it inherits

all the methods of

the Tree ADT

Additional methods:

 position left(p)

 position right(p)

 position sibling(p)

Update methods

may be defined by

data structures

implementing the

BinaryTree ADT

© 2013 Goodrich, Tamassia, Goldwasser Trees 165

LINK TO PYTHON CODE

166 Data Structures and Algorithms 31632

 In an inorder traversal a
node is visited after its left
subtree and before its right
subtree

 Application: draw a binary
tree

 x(v) = inorder rank of v

 y(v) = depth of v

© 2013 Goodrich, Tamassia, Goldwasser Trees 166

Algorithm inOrder(v)

if v has a left child

inOrder (left (v))

visit(v)

if v has a right child

inOrder (right (v))

3

1

2

5

6

7 9

8

4

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/binary_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/binary_tree.py

ד"תשע/שבט/ט"י

84

167 Data Structures and Algorithms 31632

 Specialization of an inorder
traversal

 print operand or operator
when visiting node

 print “(“ before traversing left
subtree

 print “)“ after traversing right
subtree

© 2013 Goodrich, Tamassia, Goldwasser Trees 167

Algorithm printExpression(v)

if v has a left child
 print(“(’’)

inOrder (left(v))

print(v.element ())

if v has a right child

inOrder (right(v))

 print (“)’’)

+

 

- 2

a 1

3 b
((2  (a - 1)) + (3  b))

LINK TO PYTHON CODE

168 Data Structures and Algorithms 31632

 Specialization of a postorder

traversal

 recursive method returning

the value of a subtree

 when visiting an internal

node, combine the values

of the subtrees

© 2013 Goodrich, Tamassia, Goldwasser Trees 168

Algorithm evalExpr(v)

if is_leaf (v)

return v.element ()

else

 x  evalExpr(left (v))

 y  evalExpr(right (v))

   operator stored at v

return x  y +

 

- 2

5 1

3 2

LINK TO PYTHON CODE

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py

ד"תשע/שבט/ט"י

85

169 Data Structures and Algorithms 31632

 Generic traversal of a binary tree

 Includes a special cases the preorder, postorder and inorder traversals

 Walk around the tree and visit each node three times:

 on the left (preorder)

 from below (inorder)

 on the right (postorder)

© 2013 Goodrich, Tamassia, Goldwasser Trees 169

+



- 2

5 1

3 2

L

B

R 

170 Data Structures and Algorithms 31632

 A node is represented by
an object storing

 Element

 Parent node

 Sequence of children
nodes

 Node objects implement
the Position ADT

© 2013 Goodrich, Tamassia, Goldwasser Trees 170



B

D A

C E

F

B

 

A D F



C



E

ד"תשע/שבט/ט"י

86

171 Data Structures and Algorithms 31632

© 2013 Goodrich, Tamassia,

Goldwasser

Trees 171

class Node:
 "Class for storing a binary tree node"

 def __init__(self, element, parent=None, left=None, right=None):
 self.element = element
 self.parent = parent
 self.left = left
 self.right = right

172 Data Structures and Algorithms 31632

 A node is represented by

an object storing

 Element

 Parent node

 Left child node

 Right child node

 Node objects implement

the Position ADT

© 2013 Goodrich, Tamassia, Goldwasser Trees 172

B

D A

C E

 

   

B

A D

C E



http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/gcd1.py

ד"תשע/שבט/ט"י

87

173 Data Structures and Algorithms 31632

Nodes are stored in an array A

© 2013 Goodrich, Tamassia, Goldwasser Trees 173

 Node v is stored at A[rank(v)]

 rank(root) = 1

 if node is the left child of parent(node),
 rank(node) = 2  rank(parent(node))

 if node is the right child of parent(node),
 rank(node) = 2  rank(parent(node)) + 1

1

2 3

6 7 4 5

10 11

A

H G

F E

D

C

B

J

A B D G H … …

1 2 3 10 11 0

174 Data Structures and Algorithms 31632

© 2013 Goodrich, Tamassia,

Goldwasser

Trees 174

ד"תשע/שבט/ט"י

88

175 Data Structures and Algorithms 31632

© 2013 Goodrich, Tamassia,

Goldwasser

Trees 175

import os

def disk_space(dir):
 size = 0
 for file in os.listdir(dir) :
 path = dir + "/" + file
 if os.path.isfile(path):
 size += os.path.getsize(path)
 else:
 size += disk_space(path)
 return size

Part 4: Trees

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/linked_binary_tree.py
http://upload.wikimedia.org/wikipedia/commons/b/ba/Shaki_khan_palace_interier.jpg

ד"תשע/שבט/ט"י

89

Trees

© 2013 Goodrich, Tamassia, Goldwasser 177 Trees

Make Money Fast!

Stock
Fraud

Ponzi
Scheme

Bank
Robbery

Example: Family Tree

© 2013 Goodrich, Tamassia, Goldwasser 178 Trees

ד"תשע/שבט/ט"י

90

Example: Unix File System

© 2013 Goodrich, Tamassia, Goldwasser 179 Trees

What is a Tree

 In computer science, a
tree is an abstract model
of a hierarchical
structure

 A tree consists of nodes
with a parent-child
relation

 Applications:

 Organization charts

 File systems

 Programming
environments

© 2013 Goodrich, Tamassia, Goldwasser Trees 180

Computers”R”Us

Sales R&D Manufacturing

Laptops Desktops US International

Europe Asia Canada

ד"תשע/שבט/ט"י

91

What is a Tree (Daniel Geva)

© 2013 Goodrich, Tamassia, Goldwasser Trees 181

n2 left subtree

n1

n2 n3

n4 n5 n6

n8 n9 n10

Root

Right son of n3

Left son of n3

Parent of n6 and n7

Leaf (all green

nodes)

A node(all circles)

Edge

Node height – number of edges on the longest path to a leaf

Tree height – height of the root

Balanced Tree – All non- leaf have two sons

n11

n7

Tree Terminology
 Root

node without parent (A)

 Internal node
node with at least one child (A, B, C, F)

 Leaf (External node)
node without children (E, I, J, K, G, H, D)

 Ancestors of a node:
parent, grandparent, grand-grandparent,
etc.

 Depth of a node:
number of ancestors

 Height of a node:
1 + Max height of children
(leaf height = 0)

 Height of a tree
maximum depth of any node (3)

 Descendant of a node
child, grandchild, grand-grandchild, etc.

© 2013 Goodrich, Tamassia, Goldwasser Trees 182

subtree

A

B D C

G H E F

I J K

 Subtree: tree consisting of
a node and its
descendants

ד"תשע/שבט/ט"י

92

Tree ADT

 We use positions to abstract
nodes, left key is return type:

 Generic methods:

 Integer len()

 Boolean is_empty()

 Iterator positions()

 Iterator iter()

 Accessor methods:

 position root()

 position parent(p)

 Iterator children(p)

 Integer num_children(p)

Note: A tree position is like a list index

© 2013 Goodrich, Tamassia, Goldwasser Trees 183

Query methods:

 Boolean is_leaf(p)

 Boolean is_root(p)

Update method:

 element replace (p, o)

Additional update methods
may be defined by data
structures implementing the
Tree ADT

Abstract Tree Class in Python

© 2013 Goodrich, Tamassia, Goldwasser Trees 184

ד"תשע/שבט/ט"י

93

Preorder Traversal
 A traversal visits the nodes of a

tree in a systematic manner

 In a preorder traversal, a node is
visited before its descendants

 Application: print a structured
document

© 2013 Goodrich, Tamassia, Goldwasser Trees 185

Make Money Fast!

1. Motivations References 2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preOrder(v)

visit(v)

for each child w of v

 preOrder (w)

Postorder Traversal
 In a postorder traversal, a

node is visited after its
descendants

 Application: compute space
used by files in a directory and
its subdirectories

© 2013 Goodrich, Tamassia, Goldwasser Trees 186

Algorithm postOrder(v)

for each child w of v

 postOrder (w)

visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

ד"תשע/שבט/ט"י

94

Binary Trees
 A binary tree is a tree with the

following properties:

 Each internal node has at most two
children (exactly two for proper
binary trees)

 The children of a node are an
ordered pair

 We call the children of an internal
node left child and right child

 Proper Binary Tree: every node is a
leaf or must have exactly two
children

© 2013 Goodrich, Tamassia, Goldwasser Trees 187

 Applications:

 arithmetic expressions

 decision processes

 searching

A

B C

F G D E

H I LINK TO PYTHON CODE

Arithmetic Expression Tree

 Binary tree associated with an arithmetic expression

 internal nodes: operators

 external nodes: operands

 Example: arithmetic expression tree for the
expression (2  (a - 1) + (3  b))

© 2013 Goodrich, Tamassia, Goldwasser Trees 188

+

 

- 2

a 1

3 b

LINK TO PYTHON CODE

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/binary_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py

ד"תשע/שבט/ט"י

95

Decision Tree

 Binary tree associated with a decision process

 internal nodes: questions with yes/no answer

 external nodes: decisions

 Example: dining decision

© 2013 Goodrich, Tamassia, Goldwasser Trees 189

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

Properties of Proper Binary Trees

 Notation

n number of nodes

e number of

external nodes

i number of internal

nodes

h height

© 2013 Goodrich, Tamassia, Goldwasser Trees 190

Properties:

 e = i + 1

 n = 2e - 1

 h  i

 h  (n - 1)/2

 e  2h

 h  log2 e

 h  log2 (n + 1) - 1

ד"תשע/שבט/ט"י

96

BinaryTree ADT

 The BinaryTree ADT
extends the Tree
ADT, i.e., it inherits
all the methods of
the Tree ADT

 Additional methods:

 position left(p)

 position right(p)

 position sibling(p)

 Update methods
may be defined by
data structures
implementing the
BinaryTree ADT

© 2013 Goodrich, Tamassia, Goldwasser Trees 191

LINK TO PYTHON CODE

Inorder Traversal
 In an inorder traversal a

node is visited after its left
subtree and before its right
subtree

 Application: draw a binary
tree

 x(v) = inorder rank of v

 y(v) = depth of v

© 2013 Goodrich, Tamassia, Goldwasser Trees 192

Algorithm inOrder(v)

if v has a left child

inOrder (left (v))

visit(v)

if v has a right child

inOrder (right (v))

3

1

2

5

6

7 9

8

4

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/binary_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/binary_tree.py

ד"תשע/שבט/ט"י

97

Print Arithmetic Expressions
 Specialization of an inorder

traversal
 print operand or operator

when visiting node

 print “(“ before traversing left
subtree

 print “)“ after traversing right
subtree

© 2013 Goodrich, Tamassia, Goldwasser Trees 193

Algorithm printExpression(v)

if v has a left child
 print(“(’’)

inOrder (left(v))

print(v.element ())

if v has a right child

inOrder (right(v))

 print (“)’’)

+

 

- 2

a 1

3 b
((2  (a - 1)) + (3  b))

LINK TO PYTHON CODE

Evaluate Arithmetic Expressions
 Specialization of a postorder

traversal

 recursive method returning
the value of a subtree

 when visiting an internal
node, combine the values
of the subtrees

© 2013 Goodrich, Tamassia, Goldwasser Trees 194

Algorithm evalExpr(v)

if is_leaf (v)

return v.element ()

else

 x  evalExpr(left (v))

 y  evalExpr(right (v))

   operator stored at v

return x  y +

 

- 2

5 1

3 2

LINK TO PYTHON CODE

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/TREES/expression_tree.py

ד"תשע/שבט/ט"י

98

Linked Structure for Trees
 A node is represented by

an object storing
 Element

 Parent node

 Sequence of children
nodes

 Node objects implement
the Position ADT

© 2013 Goodrich, Tamassia, Goldwasser Trees 195



B

D A

C E

F

B

 

A D F



C



E

The Node Class

© 2013 Goodrich, Tamassia, Goldwasser Trees 196

class Node:
 "Class for storing a binary tree node"

 def __init__(self, element, parent=None, left=None, right=None):
 self.element = element
 self.parent = parent
 self.left = left
 self.right = right

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/LAB/gcd1.py

ד"תשע/שבט/ט"י

99

Linked Structure for Binary Trees
 A node is represented

by an object storing

 Element

 Parent node

 Left child node

 Right child node

 Node objects implement
the Position ADT

© 2013 Goodrich, Tamassia, Goldwasser Trees 197

B

D A

C E

 

   

B

A D

C E



Array-Based Representation of
Binary Trees

 Nodes are stored in an array A

© 2013 Goodrich, Tamassia, Goldwasser Trees 198

 Node v is stored at A[rank(v)]

 rank(root) = 1

 if node is the left child of parent(node),
 rank(node) = 2  rank(parent(node))

 if node is the right child of parent(node),
 rank(node) = 2  rank(parent(node)) + 1

1

2 3

6 7 4 5

10 11

A

H G

F E

D

C

B

J

A B D G H … …

1 2 3 10 11 0

ד"תשע/שבט/ט"י

100

Example: Directory Disk Space

© 2013 Goodrich, Tamassia, Goldwasser Trees 199

Example: Directory Disk Space

© 2013 Goodrich, Tamassia, Goldwasser Trees 200

import os

def disk_space(dir):
 size = 0
 for file in os.listdir(dir) :
 path = dir + "/" + file
 if os.path.isfile(path):
 size += os.path.getsize(path)
 else:
 size += disk_space(path)
 return size

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/linked_binary_tree.py

ד"תשע/שבט/ט"י

101

© 2013 Goodrich, Tamassia, Goldwasser Graphs 201

Graphs

ORD

DFW

SFO

LAX

© 2013 Goodrich, Tamassia, Goldwasser Graphs 202

Graphs
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices

 E is a collection of pairs of vertices, called edges

 Vertices and edges are positions and store elements

 Example:

 A vertex represents an airport and stores the three-letter airport code

 An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

ד"תשע/שבט/ט"י

102

© 2013 Goodrich, Tamassia, Goldwasser Graphs 203

Edge Types
 Directed edge

 ordered pair of vertices (u,v)

 first vertex u is the origin

 second vertex v is the destination

 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)

 e.g., a flight route

 Directed graph

 all the edges are directed

 e.g., route network

 Undirected graph

 all the edges are undirected

 e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD
849
miles

© 2013 Goodrich, Tamassia, Goldwasser Graphs 204

John

David
Paul

brown.edu

cox.net

cs.brown.edu

att.net

qwest.net

math.brown.edu

cslab1bcslab1a

Applications
 Electronic circuits

 Printed circuit board

 Integrated circuit

 Transportation networks

 Highway network

 Flight network

 Computer networks

 Local area network

 Internet

 Web

 Databases

 Entity-relationship diagram

ד"תשע/שבט/ט"י

103

© 2013 Goodrich, Tamassia, Goldwasser Graphs 205

Terminology
 End vertices (or endpoints) of

an edge

 U and V are the endpoints of a

 Edges incident on a vertex

 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex

 X has degree 5

 Parallel edges

 h and i are parallel edges

 Self-loop

 j is a self-loop

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

© 2013 Goodrich, Tamassia, Goldwasser Graphs 206

P1

Terminology (cont.)

 Path

 sequence of alternating
vertices and edges

 begins with a vertex

 ends with a vertex

 each edge is preceded and
followed by its endpoints

 Simple path

 path such that all its vertices
and edges are distinct

 Examples

 P1=(V,b,X,h,Z) is a simple path

 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple

X U

V

W

Z

Y

a

c

b

e

d

f

g

h P2

ד"תשע/שבט/ט"י

104

© 2013 Goodrich, Tamassia, Goldwasser Graphs 207

Terminology (cont.)
 Cycle

 circular sequence of alternating
vertices and edges

 each edge is preceded and
followed by its endpoints

 Simple cycle

 cycle such that all its vertices
and edges are distinct

 Examples

 C1=(V,b,X,g,Y,f,W,c,U,a,) is a
simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)
is a cycle that is not simple

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h C2

© 2013 Goodrich, Tamassia, Goldwasser Graphs 208

Properties
Notation

 n number of vertices

 m number of edges

deg(v) degree of vertex v

Property 1

Sv deg(v) = 2m

Proof: each edge is
counted twice

Property 2
In an undirected graph

with no self-loops and
no multiple edges

 m  n (n - 1)/2

Proof: each vertex has
degree at most (n - 1)

What is the bound for a
directed graph?

Example

 n = 4

 m = 6

 deg(v) = 3

ד"תשע/שבט/ט"י

105

© 2013 Goodrich, Tamassia, Goldwasser Graphs 209

Vertices and Edges
 A graph is a collection of vertices and edges.

 We model the abstraction as a combination of three data types:
Vertex, Edge, and Graph.

 A Vertex is a lightweight object that stores an arbitrary
element provided by the user (e.g., an airport code)
 We assume it supports a method, element(), to retrieve the stored

element.

 An Edge stores an associated object (e.g., a flight number,
travel distance, cost), retrieved with the element() method.

 In addition, we assume that an Edge supports the following
methods:

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT

Graphs 210

ד"תשע/שבט/ט"י

106

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Basic Usage

Graphs 211

def basic_graph_example_1():
 g = Graph()
 v1 = g.insert_vertex(1)
 v2 = g.insert_vertex(2)
 v3 = g.insert_vertex(3)
 v4 = g.insert_vertex(4)
 v5 = g.insert_vertex(5)

 e1 = g.insert_edge(v1,v4)
 e2 = g.insert_edge(v3,v1)
 e3 = g.insert_edge(v5,v3)
 e4 = g.insert_edge(v2,v5)

 print "Vertices:"
 for v in g.vertices():
 print v.element()

 print "Edges:"
 for e in g.edges():
 a,b = e.endpoints()
 print a.element(), b.element()

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Airport Map Example

Graphs 212

loc = {
 'BOS': (80,90), # BASCO Airport
 'SFO': (150,40), # San Francisco International Airport
 'JFK': (300,100), # John F. Kennedy Airport, NY
 'MIA': (230,360), # Miami Airport, Florida
 'DFW': (400,250), # Dallas/Fort Worth International Airport
 'ORD': (160,140), # Chicago O'Hare International Airport
 'LAX': (80,290), # Los Angeles International Airport
 }

E = (# Airport connections
 ('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
 ('JFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
 ('ORD','MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
 ('DFW','LAX'), ('MIA','DFW'), ('MIA','LAX'),
)

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/GRAPHS/graph_basic_examples.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/GRAPHS/graph_basic_examples.py

ד"תשע/שבט/ט"י

107

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Graphical View

Graphs 213

© 2013 Goodrich, Tamassia, Goldwasser

Graph ADT: Code

Graphs 214

def draw_airport_map():
 g = Graph(True) # directed graph !
 vert = dict() # dictionary from label to vertex object
 for a in loc:
 vert[a] = g.insert_vertex(a)

 for a,b in E:
 g.insert_edge(vert[a], vert[b])

 for v in g.vertices():
 airport = v.element()
 p = Point(*loc[airport])
 p.draw()
 p.text(airport)

 for e in g.edges():
 a, b = e.endpoints()
 x1, y1 = loc[a.element()]
 x2, y2 = loc[b.element()]
 l = Line.from_coords(x1, y1, x2, y2)
 l.draw(fill="red", width=1, arrow="last", arrowshape=[10,14,4])

loc = {
 'BOS': (80,90), # BASCO Airport
 'SFO': (150,40), # San Francisco International Airport
 'JFK': (300,100), # John F. Kennedy Airport, NY
 'MIA': (230,360), # Miami Airport, Florida
 'DFW': (400,250), # Dallas/Fort Worth International Airport
 'ORD': (160,140), # Chicago O'Hare International Airport
 'LAX': (80,290), # Los Angeles International Airport
 }

E = (# Airport connections
 ('BOS','SFO'), ('BOS','JFK'), ('BOS','MIA'), ('JFK','BOS'),
 ('JFK','DFW'), ('JFK','MIA'), ('JFK','SFO'), ('ORD','DFW'),
 ('ORD','MIA'), ('LAX','ORD'), ('DFW','SFO'), ('DFW','ORD'),
 ('DFW','LAX'), ('MIA','DFW'), ('MIA','LAX'),
)

http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/GRAPHS/graph_basic_examples.py
http://brd4.braude.ac.il/~samyz/cgi-bin/view_file.py?file=DSAL/CODE/GRAPHS/graph_basic_examples.py

ד"תשע/שבט/ט"י

108

© 2013 Goodrich, Tamassia, Goldwasser Graphs 215

Edge List Structure
 Vertex object

 element

 reference to position in
vertex sequence

 Edge object

 element

 origin vertex object

 destination vertex object

 reference to position in
edge sequence

 Vertex sequence

 sequence of vertex
objects

 Edge sequence

 sequence of edge objects

© 2013 Goodrich, Tamassia, Goldwasser Graphs 216

Adjacency List Structure
 Incidence sequence

for each vertex

 sequence of
references to edge
objects of incident
edges

 Augmented edge
objects

 references to
associated
positions in
incidence
sequences of end
vertices

ד"תשע/שבט/ט"י

109

© 2013 Goodrich, Tamassia, Goldwasser Graphs 217

Adjacency Matrix Structure
 Edge list structure

 Augmented vertex
objects

 Integer key (index)
associated with vertex

 2D-array adjacency
array

 Reference to edge
object for adjacent
vertices

 Null for non
nonadjacent vertices

 The “old fashioned”
version just has 0 for
no edge and 1 for edge

© 2013 Goodrich, Tamassia, Goldwasser Graphs 218

Performance
 n vertices, m edges

 no parallel edges

 no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1

ד"תשע/שבט/ט"י

110

© 2013 Goodrich, Tamassia, Goldwasser

Python Graph Implementation
 We use a variant of the adjacency map representation.

 For each vertex v, we use a Python dictionary to
represent the secondary incidence map I(v).

 The list V is replaced by a top-level dictionary D that
maps each vertex v to its incidence map I(v).

 Note that we can iterate through all vertices by generating the
set of keys for dictionary D.

 A vertex does not need to explicitly maintain a reference
to its position in D, because it can be determined in O(1)
expected time.

 Running time bounds for the adjacency-list graph ADT
operations, given above, become expected bounds.

 Graphs 219

© 2013 Goodrich, Tamassia, Goldwasser

Vertex Class

Graphs 220

ד"תשע/שבט/ט"י

111

© 2013 Goodrich, Tamassia, Goldwasser

Edge Class

Graphs 221

© 2013 Goodrich, Tamassia, Goldwasser

Graph,
Part 1

Graphs 222

ד"תשע/שבט/ט"י

112

© 2013 Goodrich, Tamassia, Goldwasser

Graph,
end

Graphs 223

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 224

Depth-First Search
D B

A

C

E

https://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=wf3uzhKkYuFedM&tbnid=lQDKUiFHv07AWM:&ved=0CAUQjRw&url=http://incanroads.blogspot.com/&ei=e0HLUtfJHOnA0QWTbA&psig=AFQjCNEElLQ7No698rC8AmOcYbgx0CEpRQ&ust=1389138528430190

ד"תשע/שבט/ט"י

113

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 225

Subgraphs

 A subgraph S of a graph
G is a graph such that

 The vertices of S are a
subset of the vertices of G

 The edges of S are a
subset of the edges of G

 A spanning subgraph of G
is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 226

Connectivity

 A graph is
connected if there is
a path between
every pair of
vertices

 A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

ד"תשע/שבט/ט"י

114

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 227

Trees and Forests

 A (free) tree is an
undirected graph T such
that
 T is connected

 T has no cycles

This definition of tree is
different from the one of
a rooted tree

 A forest is an undirected
graph without cycles

 The connected
components of a forest
are trees

Tree

Forest

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 228

Spanning Trees and Forests

 A spanning tree of a
connected graph is a
spanning subgraph that is
a tree

 A spanning tree is not
unique unless the graph is
a tree

 Spanning trees have
applications to the design
of communication
networks

 A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

ד"תשע/שבט/ט"י

115

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 229

Depth-First Search

 Depth-first search (DFS)
is a general technique
for traversing a graph

 A DFS traversal of a
graph G
 Visits all the vertices and

edges of G

 Determines whether G is
connected

 Computes the connected
components of G

 Computes a spanning
forest of G

 DFS on a graph with n
vertices and m edges
takes O(n + m) time

 DFS can be further
extended to solve other
graph problems
 Find and report a path

between two given
vertices

 Find a cycle in the graph

 Depth-first search is to
graphs what Euler tour
is to binary trees

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 230

DFS Algorithm
 The algorithm uses a mechanism

for setting and getting “labels”
of vertices and edges

Algorithm DFS(G, v)

 Input graph G and a start vertex v of G

 Output labeling of the edges of G
 in the connected component of v
 as discovery edges and back edges

 setLabel(v, VISITED)

for all e  G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED

 w  opposite(v,e)

 if getLabel(w) = UNEXPLORED

 setLabel(e, DISCOVERY)

 DFS(G, w)

 else

 setLabel(e, BACK)

Algorithm DFS(G)

 Input graph G

 Output labeling of the edges of G
 as discovery edges and
 back edges

for all u  G.vertices()

 setLabel(u, UNEXPLORED)

for all e  G.edges()

 setLabel(e, UNEXPLORED)

for all v  G.vertices()

 if getLabel(v) = UNEXPLORED

 DFS(G, v)

ד"תשע/שבט/ט"י

116

© 2013 Goodrich, Tamassia, Goldwasser

Python Implementation

Depth-First Search 231

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 232

Example

D B

A

C

E

D B

A

C

E

D B

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

ד"תשע/שבט/ט"י

117

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 233

Example (cont.)

D B

A

C

E

D B

A

C

E

D B

A

C

E

D B

A

C

E

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 234

DFS and Maze Traversal

 The DFS algorithm is
similar to a classic
strategy for exploring
a maze
 We mark each

intersection, corner
and dead end (vertex)
visited

 We mark each corridor
(edge) traversed

 We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

ד"תשע/שבט/ט"י

118

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 235

Properties of DFS

Property 1
 DFS(G, v) visits all the

vertices and edges in
the connected
component of v

Property 2
 The discovery edges

labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

D B

A

C

E

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 236

Analysis of DFS

 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled twice
 once as UNEXPLORED

 once as VISITED

 Each edge is labeled twice
 once as UNEXPLORED

 once as DISCOVERY or BACK

 Method incidentEdges is called once for each vertex

 DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

 Recall that Sv deg(v) = 2m

ד"תשע/שבט/ט"י

119

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 237

Path Finding
 We can specialize the DFS

algorithm to find a path
between two given
vertices u and z using the
template method pattern

 We call DFS(G, u) with u
as the start vertex

 We use a stack S to keep
track of the path between
the start vertex and the
current vertex

 As soon as destination
vertex z is encountered,
we return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)

 setLabel(v, VISITED)

 S.push(v)

if v = z

 return S.elements()

for all e  G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED

 w  opposite(v,e)

 if getLabel(w) = UNEXPLORED

 setLabel(e, DISCOVERY)

 S.push(e)

 pathDFS(G, w, z)

 S.pop(e)

 else

 setLabel(e, BACK)

S.pop(v)

© 2013 Goodrich, Tamassia, Goldwasser Depth-First Search 238

Cycle Finding

 We can specialize the
DFS algorithm to find a
simple cycle using the
template method pattern

 We use a stack S to

keep track of the path
between the start vertex
and the current vertex

 As soon as a back edge

(v, w) is encountered,

we return the cycle as
the portion of the stack

from the top to vertex w

Algorithm cycleDFS(G, v, z)

 setLabel(v, VISITED)

 S.push(v)

for all e  G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED

 w  opposite(v,e)

 S.push(e)

 if getLabel(w) = UNEXPLORED

 setLabel(e, DISCOVERY)

 pathDFS(G, w, z)

 S.pop(e)

 else

 T  new empty stack

 repeat

 o  S.pop()

 T.push(o)

 until o = w

 return T.elements()

S.pop(v)

ד"תשע/שבט/ט"י

120

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 239

Shortest Paths

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 240

Weighted Graphs
 In a weighted graph, each edge has an associated numerical

value, called the weight of the edge

 Edge weights may represent, distances, costs, etc.

 Example:
 In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

 What is the shortest path from HNL to PVD ?

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

ד"תשע/שבט/ט"י

121

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 241

Shortest Paths
 Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.

 Length of a path is the sum of the weights of its edges.

 Example:

 Shortest path between Providence and Honolulu

 Applications

 Internet packet routing

 Flight reservations

 Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 242

Shortest Path Properties

Property 1:

 A subpath of a shortest path is itself a shortest path

Property 2:

 There is a tree of shortest paths from a start vertex to all the other
vertices

Example:

 Tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

ד"תשע/שבט/ט"י

122

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 243

Dijkstra’s Algorithm

 The distance of a vertex
v from a vertex s is the

length of a shortest path
between s and v

 Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s

 Assumptions:

 the graph is connected

 the edges are directed

 the edge weights are
nonnegative

 We grow a “cloud” of vertices,
beginning with s and eventually

covering all the vertices

 We store with each vertex v a
label d(v) representing the
distance of v from s in the

subgraph consisting of the cloud
and its adjacent vertices

 At each step

 We add to the cloud the vertex
u outside the cloud with the
smallest distance label, d(u)

 We update the labels of the
vertices adjacent to u

© 2013 Goodrich, Tamassia, Goldwasser

v1

SRC

Cloud Progresssion

v2

v3

v5

v4

v9

v8

v7

v6

ד"תשע/שבט/ט"י

123

© 2013 Goodrich, Tamassia, Goldwasser

SRC

Correctness Proof

v2
v4

v5

v8

v7

v3

v6

© 2013 Goodrich, Tamassia, Goldwasser

Dijkstra’s Algorithm
def dijkstra(g, src):
 cloud = {src: 0} # cloud of visited vertices/edges and their distance from src
 gps = {} # gps dictionary maps a vertex to edge toward source src
 distance = {} # distance dictionary: distance[u] = min distance from u to src
 vertices = set(g.vertices())
 vertices.remove(src) # src is the single element currently in cloud
 distance[src] = 0 # distance from src to itself is 0
 for u in vertices: # distance of any other vertex to source is infinity
 distance[u] = float('Infinity')

 while True:
 # Construct the next ring
 ring = []
 for v in cloud:
 for edge in g.incident_edges(v, False): # incoming edges to v
 u = edge.opposite(v)
 du = distance[v] + edge.element()
 if du < distance[u]:
 distance[u] = du
 gps[u] = edge
 if u not in cloud:
 ring.append(u)
 if not ring:
 break

 for u in ring:
 cloud[u] = distance[u]

 return cloud, gps

ד"תשע/שבט/ט"י

124

© 2013 Goodrich, Tamassia, Goldwasser

Shortest Path
Given a graph g, a cloud tree as above
we can easily compute a path from source to destination

def shortest_path(g, tree, source, destination):
 path = []
 v = destination
 while True:
 if not v in tree:
 break
 e = tree[v]
 path.append((v,e))
 v = e.opposite(v)

 return path

© 2013 Goodrich, Tamassia, Goldwasser Shortest Paths 248

Why Dijkstra’s Algorithm Works
 Dijkstra’s algorithm is based on the greedy

method. It adds vertices by increasing distance.

C B

A

E

D

F

0

3 2 7

5 8

4 8

7 1

2 5

2

3 9

 Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

 When the previous node, D, on the
true shortest path was considered,
its distance was correct

 But the edge (D,F) was relaxed at
that time!

 Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex

