
1 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

PROTOCOL DESIGN

Part 5

2 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

AGENDA

 Networking Protocol Design Principles

 Common Networking Protocol Techniques

 Learn from old and highly used internet protocols

 Introducing SMTP, POP3, and IMAP by examples

3 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Principles of Protocol Design

 Reference: http://nerdland.net/2009/12/designing-painless-protocols

http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols
http://nerdland.net/2009/12/designing-painless-protocols

4 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 1

Do not re-invent the Wheel!

 Try first to use existing protocols, or at least to imitate

them as much as possible

 Protocols which survived many years are probably good

and well thought

 They passed a lot of storms and fire tests and they are

still here!

 For this, we need to get to know at least the most

popular ones first

5 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 2

KISSD - Keep It Simple Stupid and

Deterministic

 Complicated protocols are doomed to cause chaos, complications,

and eventually die!

 At every stage it should be completely clear what can happen next!

 Situations in which anything can happen lead to "code pollution“

and later to horrible bugs and eventually to “protocol death”

6 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 3

Prefer Human Readability

 Prefer plain simple text on short cryptic codes

 Unless speed is truly the most important factor in your system!

 Always better to sacrifice speed for readability

 "less is more" principle

 Commands like LOGIN, GOODBYE, HELLO, QUIT are much

clearer than codes like: 031, 404, 502, etc.

 If your protocol is going to contain free-form text then your protocol

really should use Unicode!

 English is most definitely not the only language on the Internet!

7 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 4

Make Magic Numbers Meaningful

 In many cases, numeric status codes can be useful and even

human readable

 Make sure to use meaningful numbers with clear structure

 For example every HTTP response comes with a numeric status

code prefix

 Everyone is familiar with:

HTTP 404 code ("File Not Found" error code)

 In most cases, it's just enough to see the number and immediately

understand what happened

 The meaning embedded in this code is the first digit: 4

 User quickly catch the “400” response family

8 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 4 Example

Make magic numbers meaningful

200 Request was accepted and fulfilled

301 Page moved

400 Bad request

402 Payment required

403 Forbidden request

404 File not found

500 Server Error

501 Not implemented

1xx information

2xx content

3xx redirection

4xx client error

5xx server error

Details:

Architecture:

9 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 5

Scalability: Design for Expansion!
 If your protocol is good, it will be revised and extended later on

(again and again!). Prepare for this from the start!

 Assign meaningful numbers or bit masks as described in principle

4, and reserve bits and fields for future use

 Indicate your protocol version immediately after handshaking (like:

"HTTP/1.0")

 Force both connections to announce and match their protocol

versions immediately after handshaking

 Thus if a fatal design flaws are found after a year or two, upgrade

your protocol to next version and slowly deprecate the old version

 The backbone protocol of the Internet, IP, does exactly this! and

that helps makes IPv6 possible! (the IP version is an integral part of

the IP header!)

10 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 6

Don’t be stingy with information
 never hide relevant information from the other side (unless there is

a security concern)

 Practically it means: each end of the connection should be able to

query the other side for any relevant information

 Example: In the BFTP server/client project

 the client should be able to query the server if a file exists

before attempting to retrieve it, or get a list of files in a directory

 Otherwise, we will never be able to know if a file cannot be

retrieved due to server error connection problem? or it simply

does not exist?

 could be very frustrating or lead to inefficient actions

11 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 7

Document your protocol precisely !!!
 Write a clear and full design specification of your protocol before

you implement it

 You cannot implement a protocol which was not clearly designed

and well thought

 For example, it is a bad idea to have a “restart connection”

command without documenting what exactly should happen when

this command is issued? What to do with partial buffers? Late

packets? How many consecutive restarts are ok? etc.

12 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 8

Postel’s Law: “be conservative in what

you do, be liberal in what you accept

from others.”
 This was originally coined in RFC 761, the document specifying TCP

 This is a very important, and widely known principle, yet also widely

misunderstood

 The most notorious misapplication of this principle was in the

implementation of early HTML parsers.

 Based on this idea, the parsers would take in any old junk that vaguely

resembled HTML and try as hard as possible to display something on the

browser

 The result of this extreme laxity was more than a decade of the nightmare

known as “tag soup” which is only now beginning to heal from

13 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Postel’s law

Postel’s Law: “be conservative in what you do, be

liberal in what you accept from others.”

 The real meaning of the Robustness Principle is not that erroneous input

should be accepted as valid, but that erroneous input should not cause

catastrophic failure!

 Valid parts of a partially-erroneous input should be accepted if possible,

and that diagnostics should be given for erroneous input when feasible

 An HTML parser implementation that properly followed this rule would,

upon receiving “tag soup” HTML

 produce a warning message that the HTML was invalid

 hopefully display some information about what was wrong (e.g.

unclosed anchor tag, missing doctype, etc)

 and only then try to (or give the option to) display the parser’s best

approximation of what the author meant

14 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Protocol Design: Principle 9

Design for security from the start
 Security is a common problem to many of the standard protocols, which

we live with its detrimental effects every day

 These protocols, designed when the Internet was in its infancy as an

academic and governmental experiment, were not designed with security

in mind

 This is what facilitates spam, denial-of-service, phishing, privacy invasion,

and all other sorts of Internet security problems

 Today, however, it is unacceptable to design a new protocol without giving

it serious thought from the start

 Experience shows that if it is not done at the start, it may become too hard

to do after a protocol has been widely deployed

 Encryption should be a layer: once the encryption layer is removed, the

protocol should continue to adhere to the design principles articulated

above

15 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

Learn From

Examples:
Common Internet Protocols

16 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SMTP – Simple Mail Transport Protocol

Described by RFC 2821 (RFC = Request For Comments)

CLIENT: <<client connects to service port 25>> # HANDSHAKING
CLIENT: HELO shark.braude.ac.il # Sending host identifies itself
SERVER: 250 OK Hello shark, glad to meet you # Server acknowledges
CLIENT: MAIL FROM: <dan@braude.ac.il> # Identify sending user/domain
SERVER: 250 <dan@braude.ac.il>... Sender ok # Server acknowledges
CLIENT: RCPT TO: ran@stimpy.com # Identify target user
SERVER: 250 root... Recipient ok # Server acknowledges
CLIENT: DATA
SERVER: 354 Enter mail, end with "." on a line by itself
CLIENT: Hi Fred: Frenchy called. He wants to share
CLIENT: options, cards,
CLIENT: and a large collection of old baseball bats
CLIENT: Lehitraot,
CLIENT: Dan
CLIENT: . # End of multiline send
SERVER: 250 WAA01865 Message accepted for delivery
CLIENT: QUIT # Client (email sender) signs off
SERVER: 221 stimpy.com closing connection # Server disconnects
CLIENT: <<client hangs up>>

17 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SMTP: Protocol Design

 SMTP is used for uploading mail to a mail server

 Client requests have a simple command line format:

 HELO ...

 MAIL ...

 DATA ...

 RCPT ...

 Server responses consisting of a status code followed by an informational

message:

 250 <dan@braude.ac.il>... Sender ok
 221 stimpy.com closing connection

 Server response consists of a status code and a human message

 Protocol software uses the status code and usually ignores the human part

 The DATA command sends the mail body, terminated by a line consisting of

a single dot

18 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

SMTP: Main Commands

 SMTP is one of the oldest application layer protocols which is still in high use

on the Internet today

 It is simple, effective, and has withstood the test of time

HELO <sendinghostname>
 This command initiates the SMTP conversation.
 The host connecting to the remote SMTP server identifies itself
 by it's fully qualified DNS host name.

MAIL From:<source email address>
 This is the start of an email message.
 The source email address is what will appear in the
 "From:" field of the message.

RCPT To:<destination email address>
 This identifies the receipient of the email message.
 This command can be repeated multiple times for a given
 message in order to deliver a single message to multiple recepients.

For more details look at: http://the-welters.com/professional/smtp.html

http://the-welters.com/professional/smtp.html
http://the-welters.com/professional/smtp.html
http://the-welters.com/professional/smtp.html
http://the-welters.com/professional/smtp.html

19 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

POP3 – Retrieve mail from server
CLIENT: <<client connects to service port 110>>
SERVER: +OK POP3 server ready <1896.6971@mailgate.dobbs.org>
CLIENT: USER bob
SERVER: +OK bob
CLIENT: PASS redqueen
SERVER: +OK bob's maildrop has 2 messages (320 octets)
CLIENT: STAT
SERVER: +OK 2 320
CLIENT: LIST
SERVER: +OK 2 messages (320 octets)
SERVER: 1 120
SERVER: 2 200
SERVER: .
CLIENT: RETR 1
SERVER: +OK 120 octets
SERVER: <the POP3 server sends the text of message 1>
SERVER: .
CLIENT: DELE 1
SERVER: +OK message 1 deleted
CLIENT: RETR 2
SERVER: +OK 200 octets
SERVER: <the POP3 server sends the text of message 2>
SERVER: .
CLIENT: DELE 2
SERVER: +OK message 2 deleted
CLIENT: QUIT
SERVER: +OK dewey POP3 server signing off (maildrop empty)
CLIENT: <<client hangs up>>

20 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

POP3 – Client Commands

 Client commands always start with a 4 characters code

USER <username>
PASS <password>
STAT
LIST
RETR <message-id>
DELE <message-id>
QUIT

21 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

POP3 – Server Commands

 Server has only two response modes: +OK, -ERR

 Which are essentially “+” and “-”, where “OK” and “ERR”

are the “human parts”

 For some client commands, the server status line is

followed by data which ends with a single “.” line

+OK POP3 server ready <1896.6971@mailgate.dobbs.org>
+OK bob
+OK bob's maildrop has 2 messages (320 octets)
+OK 2 320
-ERR never heard of jim

http://www.pnambic.com/Goodies/POP3Ref.html

http://www.pnambic.com/Goodies/POP3Ref.html
http://www.pnambic.com/Goodies/POP3Ref.html
http://www.pnambic.com/Goodies/POP3Ref.html

22 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol

A newer post office protocol designed in a

slightly different style

 IMAP was designed to replace POP3

Excellent example of a mature and powerful

design worth studying and following its principles

 In the next example, user ilanitk is logging to a

mail server to retrieve her email
(well, it’s not Ilanit who is doing it, it’s outlook or gmail client without her

knowing about it)

23 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol
CLIENT: <<client connects to service port 143>>
SERVER: * OK iserver.com IMAP4rev1 v12.264 server ready
CLIENT: A001 USER "ilanitk" "june1987"
SERVER: * OK User ilanitk authenticated
CLIENT: A002 SELECT INBOX
SERVER: * 1 EXISTS
SERVER: * 1 RECENT
SERVER: * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
SERVER: * OK [UNSEEN 1] first unseen message in /var/spool/mail/dan
SERVER: A002 OK [READ-WRITE] SELECT completed
CLIENT: A003 FETCH 1 RFC822.SIZE Get message sizes
SERVER: * 1 FETCH (RFC822.SIZE 2545)
SERVER: A003 OK FETCH completed
CLIENT: A004 FETCH 1 BODY[HEADER] Get first message header
SERVER: * 1 FETCH (RFC822.HEADER {1425}
 <<server sends 1425 octets of message payload>>
SERVER:)
SERVER: A004 OK FETCH completed
CLIENT: A005 FETCH 1 BODY[TEXT] Get first message body
SERVER: * 1 FETCH (BODY[TEXT] {1120}
 <<server sends 1120 octets of message payload>>
SERVER:)
SERVER: * 1 FETCH (FLAGS (\Recent \Seen))
SERVER: A005 OK FETCH completed
CLIENT: A006 LOGOUT
SERVER: * BYE iserver.com IMAP4rev1 server terminating connection
SERVER: A006 OK LOGOUT completed
CLIENT: <<client hangs up>>

24 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol

 The standard IMAP procedure is to leave messages on

the server instead of retrieving copies

 Email is only accessible when "on-line” (from different

locations, and different devices)

 Suited to a world of “always-on/anywhere” connections

 Messages remain on the server, until deleted by the user

 Messages can be accessed by multiple client computers

 Clear advantage when you use more than one computer

to check your email (laptop, tablet, smartphone)

 Microsoft “MAPI” is a proprietary variation for their

outlook/exchange client/server model (does not work for

anything else)

25 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol

 IMAP uses the "Message Length in Advance Technique":

 instead of ending the payload with a dot, the payload

length is sent in advance

 This makes life harder on the server a little bit:

 messages have to be composed ahead of time

 messages cannot be streamed after the send

initiation

 But makes life easier for the client

 Client can know in advance storage and buffer sizes it

will need to process the message

26 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

IMAP - Internet Message Access Protocol

 Each response is tagged with a sequence label supplied

by the client

 In the example above they have the form A000n, but the

client could have generated any token into that slot

 This feature makes it possible for IMAP commands to be

streamed to the server without waiting for the responses

 A state machine in the client can then simply interpret the

responses and payloads as they come back

 This technique cuts down on latency

27 Client Server Programming - Slide Figures/quotes from Andrew Tanenbaum Computer Networks book (Teacher Slides)

RFC – Request For Comments

 Protocol design life cycle starts with an RFC

 RFC’s are publications made by Internet Engineering

Task Force (IETF)

 IETF develops and promotes Internet standards

 Founded by the US government around 1969 (part of the

ARPANET project), but is now a very large international

organization with many sub-organizations (acm, IEEE)

 Official RFC’s database: http://www.rfc-editor.org/rfc.html

 For example, here is RFC 3501 (March 2003) for the

IMAP specifications:

http://www.rfc-editor.org/rfc/rfc3501.txt

http://www.rfc-editor.org/rfc/rfc4978.txt

 (read it and write a similar doc for BFTP …)

http://www.rfc-editor.org/rfc.html
http://www.rfc-editor.org/rfc.html
http://www.rfc-editor.org/rfc.html
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt
http://www.rfc-editor.org/rfc/rfc4978.txt

