Code courtesy of MorvanZhou
# These are css/html style for good looking ipython notebooks
from IPython.core.display import HTML
css = open('c:/ml/style-notebook.css').read()
HTML('<style>{}</style>'.format(css))
from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
print ("PACKAGES LOADED")
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1, 1, 300)
x_data = x_data.reshape(x_data.shape + (1,))
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
plt.scatter(x_data, y_data)
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
Input size is 1, output size is 10. xs is inputs vector.
lay_1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(lay_1, 10, 1, activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
import time
def draw_lines():
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
return ax
for i in range(1000):
# training
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 100 == 0:
# to visualize the result and improvement
print("train_step:", i)
ax = draw_lines()
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# plot the prediction
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.show(block=False)
time.sleep(1)